Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The vector alignments of asteroid spins by thermal torques

Abstract

Collisions have been thought to be the dominant process altering asteroid rotations, but recent observations of the Koronis family of asteroids suggest that this may be incorrect. This group of asteroids was formed in a catastrophic collision several billion years ago; in the intervening period their rotational axes should have become nearly random because of subsequent collisions, with spin rates that follow a maxwellian distribution. What is seen, however, is that the observed family members with prograde spins have nearly identical periods (7.5–9.5 h) and obliquities between 42 and 50 degrees, while those with retrograde spins have obliquities between 154 and 169 degrees with periods either <5 h or >13 h. Here we show that these non-random orientations and spin rates can be explained by ‘thermal torques’ (arising from differential solar heating), which modify the spin states over time. In some cases, the asteroids become trapped in spin-orbit resonances. Our results suggest that thermal torques may be more important than collisions in changing the spin states (and possibly shapes) of asteroids with diameters <40 km.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Several possible evolutionary paths for prograde rotator (311) Claudia, many of which evolve into Slivan states.
Figure 2: Prograde Koronis family members trapped in the s6 spin-orbit resonance.
Figure 4: Several possible evolutionary paths for retrograde rotator (321) Florentina, many of which evolve to faster rotation rates.
Figure 3: Several possible evolutionary paths for retrograde rotator (167) Urda, many of which evolve to slower rotation rates over 4 Gyr.

References

  1. Zappalà, V., Cellino, A., Dell'Oro, A. & Paolicchi, P. in Asteroids III (eds Bottke, W. F. et al.) 619–631 (Univ. Arizona Press, Tucson, 2003)

    Google Scholar 

  2. Knežević, Z., Lemaître, A. & Milani, A. in Asteroids III (eds Bottke, W. F. et al.) 603–612 (Univ. Arizona Press, Tucson, 2003)

    Google Scholar 

  3. Bendjoya, P. & Zappalà, V. in Asteroids III (ed. Bottke, W. F. et al.) 613–618 (Univ. Arizona Press, Tucson, 2003)

    Google Scholar 

  4. Cellino, A., Bus, S. J., Doressoundiram, A. & Lazzaro, D. in Asteroids III (eds Bottke, W. F. et al.) 632–643 (Univ. Arizona Press, Tucson, 2003)

    Google Scholar 

  5. Bottke, W. F., Vokrouhlický, D., Brož, M., Nesvorný, D. & Morbidelli, A. Dynamical spreading of asteroid families by the Yarkovsky effect. Science 294, 1693–1696 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Michel, P., Benz, W., Tanga, P. & Richardson, D. C. Collisions and gravitational reaccumulation: Forming asteroid families and satellites. Science 294, 1696–1700 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Chapman, C. R. in Asteroids III (eds Bottke, W. F. et al.) 315–329 (Univ. Arizona Press, Tucson, 2003)

    Google Scholar 

  8. Marzari, F., Davis, D. & Vanzani, V. Collisional evolution of asteroid families. Icarus 113, 168–187 (1995)

    Article  ADS  Google Scholar 

  9. Greenberg, R. et al. Collisional and dynamical history of Ida. Icarus 120, 106–118 (1996)

    Article  ADS  Google Scholar 

  10. Bottke, W. F. & Greenberg, R. in Collisional Processes in the Solar System (eds Marov, M. Y. & Rickman, H.) 51–71 (Kluwer Academic, Dordrecht, 2001)

    Book  Google Scholar 

  11. Belton, M. J. S. et al. First images of asteroid 243 Ida. Science 265, 1543–1547 (1994)

    Article  ADS  CAS  Google Scholar 

  12. Asphaug, E. & Scheeres, D. J. Deconstructing Castalia: Evaluating a postimpact state. Icarus 139, 383–386 (1999)

    Article  ADS  Google Scholar 

  13. Holsapple, K., Giblin, I., Housen, K., Nakamura, A. & Ryan, E. in Asteroids III (eds Bottke, W. F. et al.) 443–462 (Univ. Arizona Press, Tucson, 2003)

    Google Scholar 

  14. Binzel, R. P. Collisional evolution in the Eos and Koronis asteroid families—Observational and numerical results. Icarus 73, 303–313 (1988)

    Article  ADS  Google Scholar 

  15. Binzel, R. P. in Asteroids, Comets, Meteors III, (eds Lagerkvist, C. I., Richman, H. & Lindblad, B. A.) 15–18, (Uppsala, 1990)

    Google Scholar 

  16. Slivan, S. M. Spin vector alignment of Koronis family asteroids. Nature 419, 49–51 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Slivan, S. M. et al. Spin vectors in the Koronis family: Comprehensive results from two independent analysis of 213 rotation lightcurves. Icarus 162, 285–307 (2003)

    Article  ADS  Google Scholar 

  18. Davies, M. E., Colvin, T. R., Belton, M. J. S., Veverka, J. & Thomas, P. C. The direction of the north pole and the control network of asteroid 243 Ida. Icarus 120, 33–37 (1996)

    Article  ADS  Google Scholar 

  19. Kaasalainen, M. & Torppa, J. Optimization methods for asteroid lightcurve inversion. I. Shape determination. Icarus 153, 24–36 (2001)

    Article  ADS  Google Scholar 

  20. Kaasalainen, M., Torppa, J. & Muinonen, K. Optimization methods for asteroid lightcurve inversion. II. The complete inversion problem. Icarus 153, 37–51 (2001)

    Article  ADS  Google Scholar 

  21. Rubincam, D. P. Radiative spin-up and spin-down of small asteroids. Icarus 148, 2–11 (2000)

    Article  ADS  Google Scholar 

  22. Vokrouhlický, D. & Čapek, D. YORP-induced long-term evolution of the spin state of small asteroids and meteroids. Rubincam's approximation. Icarus 159, 449–467 (2002)

    Article  ADS  Google Scholar 

  23. Bottke, W. F., Vokrouhlický, D., Rubincam, D. P. & Brož, M. in Asteroids III (eds Bottke, W. F. et al. ) 395–408 (Univ. Arizona Press, Tucson, 2003)

    Google Scholar 

  24. Sköglov, E., Magnusson, P. & Dahlgren, M. Evolution of the obliquities for ten asteroids. Planet. Space Sci. 44, 1177–1183 (1996)

    Article  ADS  Google Scholar 

  25. Muinonen, K. Introducing the Gaussian shape hypothesis for asteroids and comets. Astron. Astrophys. 332, 1087–1098 (1998)

    ADS  CAS  Google Scholar 

  26. Muinonen, K. & Lagerros, J. S. V. Inversion of shape statistics for small solar system bodies. Astron. Astrophys. 333, 753–761 (1998)

    ADS  Google Scholar 

  27. Thomas, P. C. et al. The shape of Ida. Icarus 120, 20–32 (1996)

    Article  ADS  Google Scholar 

  28. Ward, W. R. Climatic variations on Mars. Astronomical theory of insolation. J. Geophys. Res. 79, 3375–3386 (1974)

    Article  ADS  Google Scholar 

  29. Laskar, J. & Robutel, P. The chaotic obliquity of the planets. Nature 361, 608–612 (1993)

    Article  ADS  Google Scholar 

  30. Henrard, J. & Murigande, C. Colombo's top. Celest. Mech. 40, 345–366 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  31. Belton, M. J. S. et al. The discovery and orbit of 1993 (243)1 Dactyl. Icarus 120, 185–199 (1996)

    Article  ADS  Google Scholar 

  32. Richardson, D. C., Bottke, W. F. & Love, S. G. Tidal distortion and disruption of Earth-crossing asteroids. Icarus 134, 47–76 (1998)

    Article  ADS  Google Scholar 

  33. Asphaug, E. & Benz, W. Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus 121, 225–248 (1996)

    Article  ADS  Google Scholar 

  34. Love, S. G. & Ahrens, T. J. Origin of asteroid rotation rates in catastrophic impacts. Nature 386, 154–156 (1997)

    Article  ADS  CAS  Google Scholar 

  35. Pravec, P., Harris, A. W. & Michałowski, T. in Asteroids III (eds Bottke, W. F. et al.) 113–122 (Univ. Arizona Press, Tucson, 2003)

    Google Scholar 

  36. Vokrouhlický, D. & Farinella, P. Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies. Nature 407, 606–608 (2000)

    Article  ADS  Google Scholar 

  37. Morbidelli, A. & Vokrouhlický, D. The Yarkovsky-driven origin of near Earth asteroids. Icarus 163, 120–134 (2003)

    Article  ADS  Google Scholar 

  38. Richardson, D. C., Leinhardt, Z. M., Melosh, H. J., Bottke, W. F. & Asphaug, E. in Asteroids III (eds Bottke, W. F. et al.) 501–515 (Univ. Arizona Press, Tucson, 2003)

    Google Scholar 

  39. Rubincam, D. P., Rowlands, D. D. & Ray, R. D. Is asteroid 951 Gaspra in a resonant obliquity state with its spin increasing due to YORP? J. Geophys. Res. 107(E9), 5065 (2002)

    Article  Google Scholar 

  40. Šidlichovský, M. & Nesvorný, D. Frequency modified Fourier transform and its applications to asteroids. Celest. Mech. Dyn. Astron. 65, 137–148 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  41. Colombo, G. Cassini's second and third laws. Astron. J. 71, 891–896 (1966)

    Article  ADS  Google Scholar 

  42. Čapek, D. & Vokrouhlický, D. in ‘Asteroids, Comets and Meteors’ Conf. (Berlin, 2002) abstract 12-07, 117–118; at 〈http://berlinadmin.dlr.de/SGF/acm2002/

    Google Scholar 

Download references

Acknowledgements

We thank C. Agnor, D. Čapek, C. Chapman, D. Durda, M. Kaasalainen, A. Morbidelli, S. Slivan and W. Ward for discussions and comments. We also thank R. Binzel and D. Rubincam for reviews of our manuscript. The project was supported by NASA's Planetary Geology and Geophysics programme, NRC's COBASE programme, and the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Vokrouhlický.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vokrouhlický, D., Nesvorný, D. & Bottke, W. The vector alignments of asteroid spins by thermal torques. Nature 425, 147–151 (2003). https://doi.org/10.1038/nature01948

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01948

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing