Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photonic structures in biology

A Corrigendum to this article was published on 10 June 2004

Abstract

Millions of years before we began to manipulate the flow of light using synthetic structures, biological systems were using nanometre-scale architectures to produce striking optical effects. An astonishing variety of natural photonic structures exists: a species of Brittlestar uses photonic elements composed of calcite to collect light, Morpho butterflies use multiple layers of cuticle and air to produce their striking blue colour and some insects use arrays of elements, known as nipple arrays, to reduce reflectivity in their compound eyes. Natural photonic structures are providing inspiration for technological applications.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Peripheral layer of ophiocomid brittlestars.
Figure 2: Iridescent setae from polychaete worms.
Figure 3: Iridescence in the butterfly Morpho rhetenor.
Figure 4: Iridiscence in Papilo palinurus.
Figure 5: Structural colour in flora.
Figure 6: The green colour of Parides sesostris is created by a photonic crystal.
Figure 7: Anti-reflective nipple arrays.

References

  1. Denton, E. J. Reflectors in fishes. Sci. Am. 224, 64–72 (1971).

    ADS  Article  Google Scholar 

  2. Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819–822 (2001).

    ADS  CAS  Article  Google Scholar 

  3. Parker, A. R., McPhedran, R. C., McKenzie, D. R., Botten, L. C. & Nicorovici, N. A. Photonic engineering: Aphrodite's iridescence. Nature 409, 36–37 (2001).

    ADS  CAS  Article  Google Scholar 

  4. Vukusic, P. in Optical Interference Coatings (eds Kaiser, N. & Pulker, H. K.) 1–34 (Springer, New York, 2003).

    Book  Google Scholar 

  5. Knight, J. C. & Russell, P. St. J. Photonic Crystal Fibers: New Ways to Guide Light. Science 296, 276–277 (2002).

    CAS  Article  Google Scholar 

  6. Parker, A. R. Diffracting optics in animals: diversity and biological significance. Eur. Opt. Soc. Top. Meet. Digest Series 18, 27–30 (1998).

    Google Scholar 

  7. Hinton, H. E., Gibbs, D. F. & Silberglied, R. Stridulatory files as diffraction gratings in mutillid wasps. J. Insect Physiol. 15, 549–552 (1969).

    Article  Google Scholar 

  8. Kaiser, N. & Pulker, H. K. (eds) Optical Interference Coatings. (Springer, New York, 2003).

    Book  Google Scholar 

  9. Vukusic, P., Sambles, J. R., Lawrence, C. R. & Wootton, R. J. Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B 266, 1402–1411 (1999).

    Article  Google Scholar 

  10. Kinoshita, S., Yoshioka, S. & Kawagoe, K. Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. Lond. B. 269, 1417–1421 (2002).

    Article  Google Scholar 

  11. Ghiradella, H. Light and colour on the wing: Structural colours in butterflies and moths. Appl. Opt. 30, 3492–3500 (1991).

    ADS  CAS  Article  Google Scholar 

  12. Vukusic, P., Sambles, J. R., Lawrence, C. R. & Wootton, R. J. Structural colour: Now you see it – now you don't. Nature 410, 36 (2001).

    ADS  CAS  Article  Google Scholar 

  13. Lawrence, C. R., Vukusic, P. & Sambles, J. R. Grazing incidence iridescence from a butterfly wing. Appl. Opt. 41, 437–441 (2002).

    ADS  Article  Google Scholar 

  14. Agoston, G. A. Colour Theory and its Applications in Art and Design (Springer, New York 1987).

    Book  Google Scholar 

  15. Sweeney, A., Jiggins, C. & Johnsen, S. Polarized light as a butterfly mating signal. Nature 423, 31–32 (2003).

    ADS  CAS  Article  Google Scholar 

  16. Vukusic, P., Sambles, J. R. & Lawrence, C. R. Colour mixing in wing scales of a butterfly. Nature 404, 457 (2000).

    ADS  CAS  Article  Google Scholar 

  17. Neville, A. C. & Caveney, S. Scarabeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biol. Rev. 44, 531–562 (1969).

    CAS  Article  Google Scholar 

  18. Prum, R. O. & Torres, R. H. Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. J. Exp. Biol. 206, 2409–2429 (2003).

    Article  Google Scholar 

  19. Lee, D. W. Iridescent blue plants. Am. Sci. 85, 56–63 (1997).

    ADS  Google Scholar 

  20. Lee, D. W. Ultrastructural basis and function of iridescent blue color of fruits in Elaeocarpus. Nature 349, 260–262 (1991).

    ADS  Article  Google Scholar 

  21. Bone, R. A., Lee, D. W. & Norman, J. M. Epidermal cells functioning as lenses in leaves of tropical rain-forest shade plants. Appl. Opt. 24, 1408–1412 (1985).

    ADS  CAS  Article  Google Scholar 

  22. Vukusic, P. Shedding light on butterfly wings. Proc. SPIE 4438, 85–95 (2001).

    ADS  Article  Google Scholar 

  23. Argyros, A., Manos, S., Large, M. C. J., McKenzie, D. R., Cox G. C. & Dwarte, D. M. Electron tomography and computer visualisation of a three-dimensional 'photonic' crystal in a butterfly wing-scale. Micron 33, 483–487 (2002).

    CAS  Article  Google Scholar 

  24. Chan, C. T., Ho, K. M. & Soukoulis, C. M. Photonic band gaps in experimentally realizable periodic dielectric structures. Europhys. Lett. 16, 563–568 (1991).

    ADS  CAS  Article  Google Scholar 

  25. Sanders, J. V. & Darragh, P. J. The microstructure of precious opal. The Mineralogical Record 2, 261–268 (1971).

    CAS  Google Scholar 

  26. Land M. F. & Nilsson, D. E. Animal Eyes. (Oxford Univ., Oxford, 2001).

  27. Parker, A. R., Hegedus, Z. & Watts, R. A. Solar-absorber antireflector on the eye of an Eocence fly (45 Ma). Proc. Roy. Soc. B, 265, 811–815 (1998).

    Article  Google Scholar 

  28. Yoshida, A., Motoyama, M., Kosaku, A. & Miyamoto K. Antireflective nanoproturberance array in the transparent wing of a hawkmoth Cephanodes hylas. Zool. Sci. 14, 737–741 (1997).

    Article  Google Scholar 

  29. Wehner, R. Polarization vision – a uniform sensory capacity? J. Exp. Biol. 204, 2589–2596 (2001).

    CAS  PubMed  Google Scholar 

  30. Gralak, B., Tayeb, G. & Enoch, S. Morpho butterflies wings color modeled with lamellar grating theory. Opt. Express 9, 567–578 (2001).

    ADS  CAS  Article  Google Scholar 

  31. McMillan, W. O., Monteiro, A. & Kapan, D. D. Development and evolution on the wing. Trends Ecol. Evol. 117, 125–133 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pete Vukusic.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vukusic, P., Sambles, J. Photonic structures in biology. Nature 424, 852–855 (2003). https://doi.org/10.1038/nature01941

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01941

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing