Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical microcavities

Abstract

Optical microcavities confine light to small volumes by resonant recirculation. Devices based on optical microcavities are already indispensable for a wide range of applications and studies. For example, microcavities made of active III–V semiconductor materials control laser emission spectra to enable long-distance transmission of data over optical fibres; they also ensure narrow spot-size laser read/write beams in CD and DVD players. In quantum optical devices, microcavities can coax atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible. Applications of these remarkable devices are as diverse as their geometrical and resonant properties.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Micropost (or micropillar) cavities1, 2 have played a major role in recent applications of the Purcell effect to triggered, single-photon sources.
Figure 2: Rendering of an ultrahigh-Q microtoroid resonator6.
Figure 3: Cross-sectional illustration of a photonic crystal defect microcavity laser.
Figure 4: If the coupling energy ħg in a strongly coupled system exceeds the thermal energy of the atom, then the atomic centre of mass motion will be altered by interaction with the vacuum cavity mode.
Figure 5: Illustration of a silica microsphere whispering gallery resonator.
Figure 6: Illustration of a microcavity add/drop filter in which two buried waveguides (shown in brown) are vertically coupled to a disk whispering gallery resonator.

References

  1. Gerard, J. M. et al. Quantum boxes as active probes for photonic microstructures: The pillar microcavity case. Appl. Phys. Lett. 69, 449–451 (1996).

    CAS  ADS  Google Scholar 

  2. Solomon, G. S., Pelton, M. & Yamamoto, Y. Modification of spontaneous emission of a single quantum dot. Phys. Status Solidi 178, 341–344 (2000).

    CAS  ADS  Google Scholar 

  3. Jewell, J. L. et al. Lasing characteristics of GaAs microresonators. Appl. Phys. Lett. 54, 1400–1402 (1989).

    CAS  ADS  Google Scholar 

  4. Chang, R. K. (ed.) Optical Processes in Microcavities (World Scientific, Singapore, 1996).

    Google Scholar 

  5. Rayleigh, L. in Scientific Papers 617–620 (Cambridge Univ., Cambridge, 1912).

    Google Scholar 

  6. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    CAS  PubMed  ADS  Google Scholar 

  7. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    CAS  PubMed  Google Scholar 

  8. Taranenko, V. B. & Weiss, C. O. Spatial solitons in semiconductor microresonators. IEEE J. Select. Top. Quantum Elect. 8, 488–496 (2002).

    CAS  ADS  Google Scholar 

  9. Barland, S. et al. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).

    CAS  PubMed  ADS  Google Scholar 

  10. Stone, A. D. Wave-chaotic optical resonators and lasers. Physica Scripta T90, 248–262 (2001).

    CAS  Google Scholar 

  11. Khitrova, G., Gibbs, H. M., Jahnke, F., Kira, M. & Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 71, 1591–1639 (1999).

    ADS  Google Scholar 

  12. Brinkman, W. F., Koch, T. L., Lang, D. V. & Wilt, D. P. The lasers behind the communications revolution. Bell Labs Tech. J. 5, 150–167 (2000).

    Google Scholar 

  13. Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

    Google Scholar 

  14. Yariv, A. Quantum Electronics (Wiley, New York, 1989).

    Google Scholar 

  15. Berman, P. R. (ed.) Cavity Quantum Electrodynamics (Academic Press, New York, 1993).

    Google Scholar 

  16. Haroche, S. Entanglement, mesoscopic superpositions and decoherence studies with atoms and photons in a cavity. Physica Scripta T76, 159–164 (1998).

    CAS  ADS  Google Scholar 

  17. Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Physica Scripta T76, 127–137 (1998).

    CAS  ADS  Google Scholar 

  18. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    CAS  PubMed  ADS  Google Scholar 

  19. Mabuchi, H., Turchette, Q. A., Chapman, M. S. & Kimble, H. J. Real-time detection of individual atoms falling through a high- finesse optical cavity. Opt. Lett. 21, 1393–1395 (1996).

    CAS  PubMed  ADS  Google Scholar 

  20. Rempe, G. One-atom in an optical cavity – spatial-resolution beyond the standard diffraction limit. Appl. Phys. B 60, 233–237 (1995).

    ADS  Google Scholar 

  21. Hood, C. J., Lynn, T. W., Doherty, A. C., Parkins, A. S. & Kimble, H. J. The atom-cavity microscope: Single atoms bound in orbit by single photons. Science 287, 1447–1453 (2000).

    CAS  PubMed  ADS  Google Scholar 

  22. Pinkse, P. W. H., Fischer, T., Maunz, P. & Rempe, G. Trapping an atom with single photons. Nature 404, 365–368 (2000).

    CAS  PubMed  ADS  Google Scholar 

  23. Shimizu, Y. et al. Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity. Phys. Rev. Lett. 89, 233001 (2002).

    PubMed  ADS  Google Scholar 

  24. Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: Coherence in context. Science 298, 1372–1377 (2002).

    CAS  PubMed  ADS  Google Scholar 

  25. Raimond, J. M., Brune, M. & Haroche, S. Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).

    MathSciNet  MATH  ADS  Google Scholar 

  26. Rempe, G., Thompson, R. J., Kimble, H. J. & Lalezari, R. Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363–365 (1992).

    CAS  PubMed  ADS  Google Scholar 

  27. LefevreSeguin, V. & Haroche, S. Towards cavity-QED experiments with silica microspheres. Mat. Sci. Eng. B 48, 53–58 (1997).

    Google Scholar 

  28. Gorodetsky, M. L., Savchenkov, A. A. & Ilchenko, V. S. Ultimate Q of optical microsphere resonators. Opt. Lett. 21, 453–455 (1996).

    CAS  PubMed  ADS  Google Scholar 

  29. Vernooy, D. W., Ilchenko, V. S., Mabuchi, H., Streed, E. W. & Kimble, H. J. High-Q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 23, 247–249 (1998).

    CAS  PubMed  ADS  Google Scholar 

  30. Vuckovic, J., Loncar, M., Mabuchi, H. & Scherer, A. Design of photonic crystal microcavities for cavity QED. Phys. Rev. E 6501, 016608 (2002).

    ADS  Google Scholar 

  31. Buck, J. R. and Kimble, H. J. Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 033806 (2003).

  32. Hood, C. J., Kimble, H. J. & Ye, J. Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity. Phys. Rev. A 6403, 033804 (2001).

    ADS  Google Scholar 

  33. Knight, J. C. et al. Mapping whispering-gallery modes in microspheres with a near-field probe. Opt. Lett. 20, 1515–1517 (1995).

    CAS  PubMed  ADS  Google Scholar 

  34. Vernooy, D. W., Furusawa, A., Georgiades, N. P., Ilchenko, V. S. & Kimble, H. J. Cavity QED with high-Q whispering gallery modes. Phys. Rev. A 57, R2293–R2296 (1998).

    CAS  ADS  Google Scholar 

  35. Braginsky, V. B., Gorodetsky, M. L. & Ilchenko, V. S. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A 137, 393–397 (1989).

    ADS  Google Scholar 

  36. Gorodetsky, M. L. & Ilchenko, V. S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).

    CAS  ADS  Google Scholar 

  37. Ilchenko, V. S., Yao, X. S. & Maleki, L. Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes. Opt. Lett. 24, 723–725 (1999).

    CAS  PubMed  ADS  Google Scholar 

  38. Treussart, F. et al. Microlasers based on silica microspheres. Ann. Telecommun. 52, 557–568 (1997).

    Google Scholar 

  39. Serpenguzel, A., Arnold, S. & Griffel, G. Excitation of resonances of microspheres on an optical fiber. Opt. Lett. 20, 654–656 (1995).

    CAS  PubMed  ADS  Google Scholar 

  40. Knight, J. C., Cheung, G., Jacques, F. & Birks, T. A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22, 1129–1131 (1997).

    CAS  PubMed  ADS  Google Scholar 

  41. Cirac, J. I., van Enk, S. J., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum communication in a quantum network. Physica Scripta T76, 223–232 (1998).

    MathSciNet  CAS  MATH  ADS  Google Scholar 

  42. Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000).

    CAS  PubMed  ADS  Google Scholar 

  43. Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    CAS  PubMed  ADS  Google Scholar 

  44. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681–681 (1946).

    Google Scholar 

  45. Yamamoto, Y., Tassone, F. & Cao, H. Semiconductor Cavity Quantum Electrodynamics (Springer, New York, 2000).

    Google Scholar 

  46. Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–30 (1989).

    CAS  ADS  Google Scholar 

  47. Marzin, J. Y., Gerard, J. M., Izrael, A., Barrier, D. & Bastard, G. Photoluminescence of single Inas quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994).

    CAS  PubMed  ADS  Google Scholar 

  48. Gerard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    CAS  ADS  Google Scholar 

  49. Gerard, J. M. & Gayral, B. InAs quantum dots: artificial atoms for solid-state cavity- quantum electrodynamics. Physica E 9, 131–139 (2001).

    CAS  ADS  Google Scholar 

  50. Gerard, J. M. et al. InAs quantum boxes in GaAs/AlAs pillar microcavities: From spectroscopic investigations to spontaneous emission control. Physica E 2, 804–808 (1998).

    CAS  ADS  Google Scholar 

  51. Bayer, M. et al. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys. Rev. Lett. 86, 3168–3171 (2001).

    CAS  PubMed  ADS  Google Scholar 

  52. Gayral, B. et al. High-Q wet-etched GaAs microdisks containing InAs quantum boxes. Appl. Phys. Lett. 75, 1908–1910 (1999).

    CAS  ADS  Google Scholar 

  53. Michler, P. et al. Quantum dot lasers using high-Q microdisk cavities. Phys. Status Solidi B 224, 797–801 (2001).

    CAS  ADS  Google Scholar 

  54. Kiraz, A. et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure. Applied Phys. Lett. 78, 3932–3934 (2001).

    CAS  ADS  Google Scholar 

  55. Gerard, J. M. & Gayral, B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Tech. 17, 2089–2095 (1999).

    CAS  ADS  Google Scholar 

  56. Pelton, M., Vuckovic, J., Solomon, G. S., Scherer, A. & Yamamoto, Y. Three-dimensionally confined modes in micropost microcavities: Quality factors and Purcell factors. IEEE J. Quantum Elect. 38, 170–177 (2002).

    CAS  ADS  Google Scholar 

  57. Vuckovic, J., Pelton, M., Scherer, A. & Yamamoto, Y. Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics. Phys. Rev. A 66, 023808 (2002).

    ADS  Google Scholar 

  58. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    CAS  PubMed  ADS  Google Scholar 

  59. Reese, C. et al. High-Q photonic crystal microcavities fabricated in a thin GaAs membrane. J. Vac. Sci. Technol. B 19, 2749–2752 (2001).

    CAS  Google Scholar 

  60. Happ, T. D. et al. Enhanced light emission of InxGa1-xAs quantum dots in a two- dimensional photonic-crystal defect microcavity. Phys. Rev. B 66, 041303 (2002).

    ADS  Google Scholar 

  61. Srinivasan, K. & Painter, O. Momentum space design of high-Q photonic crystal optical cavities. Opt. Exp. 10, 670–684 (2002).

    ADS  Google Scholar 

  62. Srinivasan, K., Barclay, P., Painter, O., Chen, J., Cho, C. & Gmachl, C. Experimental demonstration of a high quality factor photonic crystal microcavity. Appl. Phys. Lett. (in the press).

  63. Boroditsky, M. et al. Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals. J. Lightwave Technol. 17, 2096–2112 (1999).

    CAS  ADS  Google Scholar 

  64. D. Bouwmeester, A. E. & A. Zeilinger. The Physics of Quantum Information (Springer, Berlin, 2000).

    Google Scholar 

  65. Kimble, H. J., Dagenais, M. & Mandel, L. Photon anti-bunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    CAS  ADS  Google Scholar 

  66. Basche, T., Moerner, W. E., Orrit, M. & Talon, H. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992).

    CAS  PubMed  ADS  Google Scholar 

  67. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    CAS  PubMed  ADS  Google Scholar 

  68. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    CAS  PubMed  ADS  Google Scholar 

  69. Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, E. Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

    CAS  PubMed  ADS  Google Scholar 

  70. Zwiller, V. et al. Single quantum dots emit single photons at a time: Antibunching experiments. Appl. Phys. Lett. 78, 2476–2478 (2001).

    CAS  ADS  Google Scholar 

  71. Thompson, R. M. et al. Single-photon emission from exciton complexes in individual quantum dots. Phys. Rev. B 64, 201302 (2001).

    ADS  Google Scholar 

  72. Lounis, B. & Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

    CAS  PubMed  ADS  Google Scholar 

  73. Brunel, C., Lounis, B., Tamarat, P. & Orrit, M. Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722–2725 (1999).

    CAS  MATH  ADS  Google Scholar 

  74. Moreau, E. et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001).

    CAS  ADS  Google Scholar 

  75. Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    CAS  PubMed  ADS  Google Scholar 

  76. Pelton, M. et al. Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    PubMed  ADS  Google Scholar 

  77. Yuan, Z. L. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

    CAS  PubMed  ADS  Google Scholar 

  78. Qian, S. X., Snow, J. B., Tzeng, H. M. & Chang, R. K. Lasing droplets – highlighting the liquid-air interface by laser-emission. Science 231, 486–488 (1986).

    CAS  PubMed  ADS  Google Scholar 

  79. Lin, H. B., Eversole, J. D. & Campillo, A. J. Spectral properties of lasing microdroplets. J. Opt. Soc. Am. B 9, 43–50 (1992).

    CAS  ADS  Google Scholar 

  80. Cai, M., Painter, O., Vahala, K. J. & Sercel, P. C. Fiber-coupled microsphere laser. Opt. Lett. 25, 1430–1432 (2000).

    CAS  PubMed  ADS  Google Scholar 

  81. Kuwatagonokami, M., Takeda, K., Yasuda, H. & Ema, K. Laser-emission from dye-doped polystyrene microsphere. Japanese J. Appl. Phys. 2 31, L99–L101 (1992).

    CAS  Google Scholar 

  82. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).

    CAS  ADS  Google Scholar 

  83. Rex, N. B., Chang, R. K. & Guido, L. J. Threshold lowering in GaN micropillar lasers by means of spatially selective optical pumping. IEEE Phot. Technol. Lett. 13, 1–3 (2001).

    ADS  Google Scholar 

  84. Deppe, D. G., Huffaker, D. L., Oh, T. H., Deng, H. Y. & Deng, Q. Low-threshold vertical-cavity surface-emitting lasers based on oxide-confinement and high contrast distributed Bragg reflectors. IEEE J. Select. Top. Quantum Elect. 3, 893–904 (1997).

    CAS  ADS  Google Scholar 

  85. Sandoghdar, V. et al. Very low threshold whispering-gallery-mode microsphere laser. Phys. Rev. A 54, R1777–R1780 (1996).

    CAS  PubMed  ADS  Google Scholar 

  86. Macdougal, M. H., Dapkus, P. D., Pudikov, V., Zhao, H. M. & Yang, G. M. Ultralow threshold current vertical-cavity surface-emitting lasers with AlAs oxide-GaAs Distributed Bragg reflectors. IEEE Phot. Technol. Lett. 7, 229–231 (1995).

    ADS  Google Scholar 

  87. Huffaker, D. L., Graham, L. A., Deng, H. & Deppe, D. G. Sub-40 microAmp continuous-wave lasing in an oxidized vertical-cavity surface-emitting laser with dielectric mirrors. IEEE Phot. Technol. Lett. 8, 974–976 (1996).

    ADS  Google Scholar 

  88. Yamamoto, Y. & Slusher, R. E. Optical processes in microcavities. Phys. Today 46, 66–73 (1993).

    CAS  Google Scholar 

  89. Rice, P. R. & Carmichael, H. J. Photon statistics of a cavity-QED laser – a comment on the laser-phase-transition analogy. Phys. Rev. A 50, 4318–4329 (1994).

    CAS  PubMed  ADS  Google Scholar 

  90. An, K. & Feld, M. A. Semiclassical four-level single atom laser. Phys. Rev. A 56, 1662–1665 (1997).

    CAS  ADS  Google Scholar 

  91. Graham, L. A., Huffaker, D. L., Csutak, S. M., Deng, Q. & Deppe, D. G. Spontaneous lifetime control of quantum dot emitters in apertured microcavities. J. Appl. Phys. 85, 3383–3385 (1999).

    CAS  ADS  Google Scholar 

  92. Qian, S. X., Snow, J. B. & Chang, R. K. Coherent Raman mixing and coherent anti-Stokes Raman-scattering from individual micrometer-size droplets. Opt. Lett. 10, 499–501 (1985).

    CAS  PubMed  ADS  Google Scholar 

  93. Lin, H. B., Eversole, J. D. & Campillo, A. J. Continuous-wave stimulated Raman-scattering in microdroplets. Opt. Lett. 17, 828–830 (1992).

    CAS  PubMed  ADS  Google Scholar 

  94. Qian, S. X. & Chang, R. K. Multiorder Stokes emission from micrometer-size droplets. Phys. Rev. Lett. 56, 926–929 (1986).

    CAS  PubMed  ADS  Google Scholar 

  95. Zhang, J. Z., Chen, G. & Chang, R. K. Pumping of stimulated Raman-scattering by stimulated Brillouin-scattering within a single liquid droplet – input laser linewidth effects. J. Opt. Soc. Am. B 7, 108–115 (1990).

    CAS  ADS  Google Scholar 

  96. Treussart, F. et al. Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium. Eur. Phys. J. D 1, 235–238 (1998).

    CAS  ADS  Google Scholar 

  97. Kaminow, I. P. & San, T. L. (eds) Optical Fiber Telecommunications IV (Academic Press, San Diego, 2002).

    Google Scholar 

  98. Alexander, S. B. et al. A precompetitive consortium on wide-band all-optical networks. J. Lightwave Technol. 11, 714–735 (1993).

    ADS  Google Scholar 

  99. Hibino, Y., Maruno, T. & Okamoto, K. Recent progress on large-scale PLC technologies with advanced functions. NTT Review 13, 4–9 (2001).

    CAS  Google Scholar 

  100. Kewitsch, A. S., Rakuljic, G. A., Willems, P. A. & Yariv, A. All-fiber zero-insertion-loss add-drop filter for wavelength- division multiplexing. Opt. Lett. 23, 106–108 (1998).

    CAS  PubMed  ADS  Google Scholar 

  101. Doerr, C. R. et al. 40-wavelength add-drop filter. IEEE Phot. Technol. Lett. 11, 1437–1439 (1999).

    ADS  Google Scholar 

  102. Suzuki, S., Hatakeyama, Y., Kokubun, Y. & Chu, S. T. Precise control of wavelength channel spacing of microring resonator add-drop filter array. J. Lightwave Technol. 20, 745–750 (2002).

    ADS  Google Scholar 

  103. Djordjev, K., Choi, S. J. & Dapkus, P. D. Microdisk tunable resonant filters and switches. IEEE Phot. Technol. Lett. 14, 828–830 (2002).

    ADS  Google Scholar 

  104. Rabiei, P. Steier, W. H., Cheng Zhang and Dalton, L. R. Polymer micro-ring filters and modulators. J. Lightwave Technol. 20, 1968–1975 (2002).

    ADS  Google Scholar 

  105. Little, B. E. et al. Wavelength switching and routing using absorption and resonance. IEEE Phot. Technol. Lett. 10, 816–818 (1998).

    MathSciNet  ADS  Google Scholar 

  106. Djordjev, K., Choi, S. J. & Dapkus, P. D. Vertically coupled InP microdisk switching devices with electroabsorptive active regions. IEEE Phot. Technol. Lett. 14, 1115–1117 (2002).

    ADS  Google Scholar 

  107. Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Phot. Technol. Lett. 14, 483–485 (2002).

    ADS  Google Scholar 

  108. Soref, R. A. & Little, B. E. Proposed N-wavelength M-fiber WDM crossconnect switch using active microring resonators. IEEE Phot. Technol. Lett. 10, 1121–1123 (1998).

    ADS  Google Scholar 

  109. Chu, S. T. et al. An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid. IEEE Phot. Technol. Lett. 11, 691–693 (1999).

    ADS  Google Scholar 

  110. Grover, R. et al. Vertically coupled GaInAsP-InP microring resonators. Opt. Lett. 26, 506–508 (2001).

    CAS  PubMed  ADS  Google Scholar 

  111. Little, B. E. et al. Vertically coupled glass microring resonator channel dropping filters. IEEE Phot. Technol. Lett. 11, 215–217 (1999).

    ADS  Google Scholar 

  112. Offrein, B. J. et al. Resonant coupler-based tunable add-after-drop filter in silicon-oxynitride technology for WDM networks. IEEE J. Select. Top. Quantum Elect. 5, 1400–1406 (1999).

    CAS  ADS  Google Scholar 

  113. Little, B. E., Chu, S. T., Haus, H. A., Foresi, J. & Laine, J. P. Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998–1005 (1997).

    ADS  Google Scholar 

  114. Grover, R. et al. Parallel-cascaded semiconductor microring resonators for high- order and wide-FSR filters. J. Lightwave Technol. 20, 872–877 (2002).

    MathSciNet  ADS  Google Scholar 

  115. Yanagase, Y., Suzuki, S., Kokubun, Y. & Chu, S. T. Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter. J. Lightwave Technol. 20, 1525–1529 (2002).

    ADS  Google Scholar 

  116. Cooper, M. A. Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 1, 515–527 (2002).

  117. Marazuela, M. D. & Moreno-Bondi, M. C. Fiber-optic biosensors – an overview. Anal. Bioanal. Chem. 372, 664–682 (2002).

    CAS  PubMed  Google Scholar 

  118. Krioukov, E., Klunder, D. J. W., Driessen, A., Greve, J. & Otto, C. Sensor based on an integrated optical microcavity. Opt. Lett. 27, 512–514 (2002).

    CAS  PubMed  ADS  Google Scholar 

  119. Vollmer, F. et al. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057–4059 (2002).

    CAS  ADS  Google Scholar 

  120. Walther, H. Quantum optics of a single atom. Physica Scripta 1, 138–146 (1998)

    Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA, the Caltech Lee Centre and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vahala, K. Optical microcavities. Nature 424, 839–846 (2003). https://doi.org/10.1038/nature01939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01939

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing