Abstract
Light propagating in linear and nonlinear waveguide lattices exhibits behaviour characteristic of that encountered in discrete systems. The diffraction properties of these systems can be engineered, which opens up new possibilities for controlling the flow of light that would have been otherwise impossible in the bulk: these effects can be exploited to achieve diffraction-free propagation and minimize the power requirements for nonlinear processes. In two-dimensional networks of waveguides, self-localized states—or discrete solitons—can travel along 'wire-like' paths and can be routed to any destination port. Such possibilities may be useful for photonic switching architectures.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
Infinitely many solutions for the discrete Schrödinger equations with a nonlocal term
Boundary Value Problems Open Access 14 January 2022
-
Single-shot measurement of the photonic band structure in a fiber-based Floquet-Bloch lattice
Communications Physics Open Access 17 November 2021
-
Strain induced localization to delocalization transition on a Lieb photonic ribbon lattice
Scientific Reports Open Access 01 November 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.







References
Jones, A. L. Coupling of optical fibers and scattering in fibers. J. Opt. Soc. Am. 55, 261–271 (1965).
Somekh, S., Garmire, E., Yariv, A, Garvin, H. L. & Hunsperger, R. G. Channel optical waveguide directional couplers. Appl. Phys. Lett. 22, 46–48 (1973).
Christodoulides, D. N. & Joseph, R. I. Discrete self-focusing in nonlinear arrays of coupled wave-guides. Opt. Lett. 13, 794–796 (1988).
Davydov, A. S. Theory of contraction of proteins under their excitation. J. Theor. Biol. 38, 559–569 (1973); Solitons and energy-transfer along protein molecules. J. Theor. Biol. 66, 377–387 (1977).
Scott, A. C. & Macneil, L. Binding energy versus nonlinearity for a 'small' stationary soliton. Phys. Lett. A 98, 87–88 (1983).
Lederer, F., Darmanyan, S. & Kobyakov, A. in Spatial Optical Solitons (eds Trillo, S. and Torruellas, W. E.) 269–292 (Springer-Verlag, New York, 2001).
Aceves, A. B. et al. Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays. Phys. Rev. E 53, 1172–1189 (1996).
Krolikowski, W. & Kivshar Yu, S. Soliton-based optical switching in waveguide arrays. J. Opt. Soc. Amer. B 13, 876–887 (1996).
Kivshar Yu, S. Self-localization in arrays of defocusing wave-guides. Opt. Lett. 18, 1147–1149 (1993).
Eisenberg, H. S., Silberberg, Y., Morandotti, R., Boyd, A. R. & Aitchison, J. S. Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998).
Eisenberg, H. S., Silberberg, Y., Morandotti, R. & Aitchison, J. S. Diffraction management. Phys. Rev. Lett. 85, 1863–1866 (2000).
Pertsch, T., Zentgraf, T., Peschel, U., Brauer, A. & Lederer, F. Anomalous refraction and diffraction in discrete optical systems. Phys. Rev. Lett. 88, 093901 (2002).
Morandotti, R., Peschel, U., Aitchison, J. S., Eisenberg, H. S. & Silberberg, Y. Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett. 83, 4756–4759 (1999).
Pertsch, T., Dannberg, P., Elflein, W., Brauer, A. & Lederer, F. Optical Bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett. 83, 4752–4755 (1999).
Mandelik, D., Eisenberg, H. S., Silberberg, Y., Morandotti, R. & Aitchison, J. S. Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons. Phys. Rev. Lett. 90, 053902 (2003).
Pertsch, T. et al. Discrete solitons in quadratic nonlinear waveguide arrays, in OSA Trends in Optics and Photonics 80 (Optical Society of America, Washington, 2002).
Fleischer, J. W., Carmon, T., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of discrete solitons in optically-induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003).
Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically-induced nonlinear photonic lattices. Nature 422, 147–150 (2003).
Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).
John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).
Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).
Russel, P. Photonic crystal fibers. Science 299, 358–362 (2003).
Sievers, A. J. & Takeno, S. Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988).
Dahan, M. B., Peik, E., Reichel, J., Castin, Y. & Salomon, C. Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett. 76, 4508–4511 (1996).
Anderson, B. P. & Kasevich, M. A. Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998).
Trombettoni, A. & Smerzi, A. Discrete solitons and breathers with dilute Bose–Einstein condensates. Phys. Rev. Lett. 86, 2353–2356 (2001).
Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1928).
Zener, C. A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. London Ser. A 145, 523–529 (1932).
Waschke, C. et al. Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice. Phys. Rev. Lett. 70, 3319–3322 (1993).
Peschel, U., Pertsch, T. & Lederer, F. Optical Bloch oscillations in waveguide arrays. Opt. Lett. 23, 1701–1703 (1998).
Stegeman, G. I. & Segev, M. Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1522 (1999).
Ashcroft, N. & Mermin, N. Solid State Physics (Saunders, Philadelphia, 1976).
Ablowitz, M. J. & Clarkson, P. A. Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge Univ, Press, Cambridge, 1992).
Kivshar Yu, S., Krolikowski, W. & Chubykalo, O. A. Dark solitons in discrete lattices. Phys. Rev. E 50, 5020–5032 (1994).
Morandotti, R., Eisenberg, H. S., Silberberg, Y., Sorel, M. & Aitchison, J. S. Self-focusing and defocusing in waveguide arrays. Phys. Rev. Lett. 86, 3296–3299 (2001).
Morandotti, R., Peschel, U., Aitchison, J. S., Eisenberg, H. S., & Silberberg, Y. Dynamics of discrete solitons in optical waveguide arrays. Phys. Rev. Lett. 83, 2726–2729 (1999).
Darmanyan, S., Kobyakov, A., Schmidt, E. & Lederer, F. Strongly localized vectorial modes in nonlinear waveguide arrays. Phys. Rev. E 57, 3520–3530 (1998).
Ablowitz, M. J. & Musslimani, Z. H. Discrete diffraction managed spatial solitons. Phys. Rev. Lett. 87, 254102–254104 (2001).
Sukhorukov, A. A. & Kivshar Yu, S. Discrete gap solitons in modulated waveguide arrays. Opt. Lett. 27, 2112–2114 (2002).
Bang, O. & Miller, P. D. Exploiting discreteness for switching in waveguide arrays. Opt. Lett. 21, 1105–1107 (1996).
Meier, J. et al. Phase-control beam interactions in Kerr-nonlinear waveguide arrays, in OSA Trends in Optics and Photonics 80 (Optical Society of America, Washington, 2002)
Meier, J. et al. Discrete vector Kerr spatial solitons in AlGaAs array waveguides, in OSA Trends in Optics and Photonics 80 (Optical Society of America, Washington, 2002)
Peschel, T., Peschel, U. & Lederer, F. Discrete bright solitary waves in quadratically nonlinear media. Phys. Rev. E 57, 1127–1133 (1998).
Malomed, B. & Kevrekidis, P. G. Discrete vortex solitons. Phys. Rev. E 64, 26601 (2001).
Christodoulides, D. N. & Efremidis, N. K. Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals. Opt. Lett. 27, 568–570 (2002).
Iliew, R., Peschel, U. & Lederer, F. Light propagation via coupled defects in photonic crystals. Proc. Quantum Electronics Laser Science Conference (2002).
Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002).
Pertsch, T. et al. Light localization in disordered two-dimensional fiber arrays. Phys. Rev. Lett. (in the press).
Cheo, P. K., Liu, A. & King, G. G. A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array. IEEE Photon. Technol. Lett. 13, 439–441 (2001).
Efremidis, N. K. & Christodoulides, D. N. Discrete Ginzburg-Landau solitons. Phys. Rev. E 67, 026606 (2003).
Yariv, A, Xu, Y, Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).
Mingaleev, S. F., Kivshar Yu, S. & Sammut, R. A. Long-range interaction and nonlinear localized modes in photonic crystal waveguides. Phys. Rev. E 62, 5777–5782 (2000).
Christodoulides, D. N. &. Eugenieva, E. D. Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays. Phys. Rev. Lett. 87, 233901 (2001).
Christodoulides, D. N. &. Eugenieva, E. D. Minimizing bending losses in two-dimensional discrete soliton networks. Opt. Lett. 26, 1876–1878 (2001).
Eugenieva, E. D., Efremidis, N. K. & Christodoulides, D. N. Design of switching junctions for two-dimensional discrete soliton networks. Opt. Lett. 26, 1978–1980 (2001).
Pertsch, T., Zentgraf, T., Peschel, U., Bräuer, A. & Lederer, F. Beam steering in waveguide arrays. Appl. Phys. Lett. 80, 3247–3249 (2002).
Pertsch, T., Peschel, U. & Lederer, F. All-optical switching in quadratically nonlinear waveguide arrays. Optics Lett. 28, 102–104 (2003).
Russell, P. St. J. Optics of Floquet-Bloch waves in dielectric gratings. Appl. Phys. B 39, 231–246 (1986).
Christodoulides, D. N. & Eugenieva, E. D. Animations of the processes described in Figs 7a, b as obtained after numerically solving the underlying evolution equations. AIP. EPAPS: E-PRLTAO-87-018147 at 〈http://www.aip.org/pubservs/epaps.html〉>.
Acknowledgements
The authors acknowledge useful discussions with Stewart Aitchison, George Stegeman, Mordechai Segev, Ulf Peschel, Roberto Morandotti, Hagai Eisenberg, Nikos Efremidis, Thomas Pertsch, D. Mandelik and Jared Hudock. The work of D.N.C. was supported by ARO MURI and of F.L. by the European Community grant (IST-2000-26005).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Christodoulides, D., Lederer, F. & Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003). https://doi.org/10.1038/nature01936
Issue Date:
DOI: https://doi.org/10.1038/nature01936
Further reading
-
Infinitely many solutions for the discrete Schrödinger equations with a nonlocal term
Boundary Value Problems (2022)
-
Topological states in quasicrystals
Frontiers of Physics (2022)
-
Existence of a Ground-State and Infinitely Many Homoclinic Solutions for a Periodic Discrete System with Sign-Changing Mixed Nonlinearities
The Journal of Geometric Analysis (2022)
-
Infinitely many homoclinic solutions for sublinear and nonperiodic Schrödinger lattice systems
Boundary Value Problems (2021)
-
Periodic solutions for second-order difference equations with quadratic–supquadratic condition
Advances in Difference Equations (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.