Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Host sanctions and the legume–rhizobium mutualism

Abstract

Explaining mutualistic cooperation between species remains one of the greatest problems for evolutionary biology1,2,3,4. Why do symbionts provide costly services to a host, indirectly benefiting competitors sharing the same individual host? Host monitoring of symbiont performance and the imposition of sanctions on ‘cheats’ could stabilize mutualism5,6. Here we show that soybeans penalize rhizobia that fail to fix N2 inside their root nodules. We prevented a normally mutualistic rhizobium strain from cooperating (fixing N2) by replacing air with an N2-free atmosphere (Ar:O2). A series of experiments at three spatial scales (whole plants, half root systems and individual nodules) demonstrated that forcing non-cooperation (analogous to cheating) decreased the reproductive success of rhizobia by about 50%. Non-invasive monitoring implicated decreased O2 supply as a possible mechanism for sanctions against cheating rhizobia. More generally, such sanctions by one or both partners may be important in stabilizing a wide range of mutualistic symbioses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rhizobia fixing N2 grew to larger numbers in whole-plant and split-root experiments.
Figure 2: Rhizobia fixing N2 grew to larger numbers in the single-nodule experiment.
Figure 3: O2 relations in single nodules where rhizobia were allowed to fix (N2:O2) or prevented from fixing (Ar:O2) N2.
Figure 4: Nodule structure and the life history of rhizobia.

Similar content being viewed by others

References

  1. Herre, E. A., Knowlton, N., Mueller, U. G. & Rehner, S. A. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol. Evol. 14, 49–53 (1999)

    Article  CAS  Google Scholar 

  2. Frank, S. A. Foundations of Social Evolution (Princeton Univ. Press, Princeton, 1998)

    Google Scholar 

  3. Yu, D. W. Parasites of mutualisms. Biol. J. Linn. Soc. 72, 529–546 (2001)

    Article  Google Scholar 

  4. Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Denison, R. F. Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am. Nat. 156, 567–576 (2000)

    Article  Google Scholar 

  6. West, S. A., Kiers, E. T., Simms, E. L. & Denison, R. F. Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc. R. Soc. Lond. B 269, 685–694 (2002)

    Article  Google Scholar 

  7. Crespi, B. J. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16, 178–183 (2001)

    Article  Google Scholar 

  8. West, S. A., Kiers, E. T., Pen, I. & Denison, R. F. Sanctions and mutualism stability: when should less beneficial mutualists be tolerated? J. Evol. Biol. 15, 830–837 (2002)

    Article  Google Scholar 

  9. Pellmyr, O. & Huth, C. J. Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372, 257–260 (1994)

    Article  ADS  CAS  Google Scholar 

  10. Frank, S. A. Mutual policing and repression of competition in the evolution of cooperative groups. Nature 377, 520–522 (1995)

    Article  ADS  CAS  Google Scholar 

  11. Ratnieks, F. L. W., Monnin, T. & Foster, K. R. Inclusive fitness theory: novel predictions and tests in social Hymenoptera. Ann. Zool. Fennici 38, 201–214 (2001)

    Google Scholar 

  12. Burdon, J. J., Gibson, A. H., Searle, S. D., Woods, M. J. & Brockwell, J. Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian Acacia: within-species interactions. J. Appl. Ecol. 36, 398–408 (1999)

    Article  Google Scholar 

  13. Singleton, P. W. & Stockinger, K. R. Compensation against ineffective nodulation in soybean. Crop Sci. 23, 69–72 (1983)

    Article  Google Scholar 

  14. Ferriere, R., Bronstein, J. L., Rinaldi, S., Law, R. & Gauduchon, M. Cheating and the evolutionary stability of mutualisms. Proc. R. Soc. Lond. B 269, 773–780 (2001)

    Article  Google Scholar 

  15. Amarger, N. Competition for nodule formation between effective and ineffective strains of Rhizobium meliloti. Soil Biol. Biochem. 13, 475–480 (1981)

    Article  Google Scholar 

  16. Hahn, M. & Studer, D. Competitiveness of a nif- Bradyrhizobium japonicum mutant against the wild-type strain. FEMS Microbiol. Lett. 33, 143–148 (1986)

    Google Scholar 

  17. Rasche, M. E. & Arp, D. J. Hydrogen inhibition of nitrogen reduction by nitrogenase in isolated soybean nodule bacteroids. Plant Physiol. 91, 663–668 (1989)

    Article  CAS  Google Scholar 

  18. Singleton, P. W. & van Kessel, C. Effect of localized nitrogen availability to soybean half-root systems on photosynthate partitioning to roots and nodules. Plant Physiol. 83, 552–556 (1987)

    Article  CAS  Google Scholar 

  19. Udvardi, M. K. & Kahn, M. L. Evolution of the (Brady)Rhizobium–legume symbiosis: why do bacteroids fix nitrogen? Symbiosis 14, 87–101 (1993)

    Google Scholar 

  20. King, B. J. & Layzell, D. B. Effect of increases in oxygen concentration during the argon-induced decline in nitrogenase activity in root nodules of soybean. Plant Physiol. 96, 376–381 (1991)

    Article  CAS  Google Scholar 

  21. Sheehy, J. E., Minchin, F. R. & Witty, J. F. Biological control of the resistance to oxygen flux in nodules. Ann. Bot. 52, 565–571 (1983)

    Article  Google Scholar 

  22. Hartwig, U., Boller, B. & Nösberger, J. Oxygen supply limits nitrogenase activity of clover nodules after defoliation. Ann. Bot. 59, 285–291 (1987)

    Article  CAS  Google Scholar 

  23. Denison, R. F. & Harter, B. L. Nitrate effects on nodule oxygen permeability and leghemoglobin. Nodule oximetry and computer modeling. Plant Physiol. 107, 1355–1364 (1995)

    Article  CAS  Google Scholar 

  24. Layzell, D. B., Rainbird, R. M., Atkins, C. A. & Pate, J. S. Economy of photosynthetic use in nitrogen-fixing legume nodules. Plant Physiol. 64, 888–891 (1979)

    Article  CAS  Google Scholar 

  25. Sen, D. & Weaver, R. W. Nitrogen fixing activity of rhizobial strain 32H1 in peanut and cowpea nodules. Plant Sci. Lett. 18, 315–318 (1980)

    Article  CAS  Google Scholar 

  26. Lodwig, E. M. et al. Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature 422, 722–726 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Kijne, J. W. The fine structure of pea root nodules. 2. Senescence and disintegration of the bacteroid tissue. Physiol. Plant Pathol. 7, 17–21 (1975)

    Article  Google Scholar 

  28. Sprent, J. I. & Raven, J. A. Evolution of nitrogen-fixing symbioses. Proc. R. Soc. Edinb. B 85, 215–237 (1985)

    Google Scholar 

  29. Layzell, D. B., Hunt, S., King, B. J., Walsh, K. B. & Weagle, G. E. in Applications of Continuous and Steady-State Methods to Root Biology (eds Torrey, J. G. & Winship, L. J.) 1–28 (Kluwer Academic, Dordrecht, 1989)

    Book  Google Scholar 

  30. Denison, R. F. & Layzell, D. B. Measurement of legume nodule respiration and O2 permeability by noninvasive spectrophotometry of leghemoglobin. Plant Physiol. 96, 137–143 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Grosberg, S. Nee, A. Griffin, D. Shuker and M. Stanton for comments, P. Graham, D. Phillips and M. King for advice on methods, R. Nelson and D. Smith for soybean cultivars ‘T243’ and ‘S0066’, and P. van Berkum for B. japonicum 110ARS. This work was supported by the NSF (grant to R.F.D. and graduate fellowship to E.T.K.), the California Agricultural Experiment Station, the Land Institute, the Royal Society, the BBSRC and the NERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ford Denison.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiers, E., Rousseau, R., West, S. et al. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003). https://doi.org/10.1038/nature01931

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01931

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing