Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A structural state of the myosin V motor without bound nucleotide

Abstract

The myosin superfamily of molecular motors use ATP hydrolysis and actin-activated product release to produce directed movement and force1. Although this is generally thought to involve movement of a mechanical lever arm attached to a motor core1,2, the structural details of the rearrangement in myosin that drive the lever arm motion on actin attachment are unknown. Motivated by kinetic evidence that the processive unconventional myosin, myosin V, populates a unique state in the absence of nucleotide and actin, we obtained a 2.0 Å structure of a myosin V fragment. Here we reveal a conformation of myosin without bound nucleotide. The nucleotide-binding site has adopted new conformations of the nucleotide-binding elements that reduce the affinity for the nucleotide. The major cleft in the molecule has closed, and the lever arm has assumed a position consistent with that in an actomyosin rigor complex. These changes have been accomplished by relative movements of the subdomains of the molecule, and reveal elements of the structural communication between the actin-binding interface and nucleotide-binding site of myosin that underlie the mechanism of chemo-mechanical transduction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Positions of subdomains and connectors in the three myosin states and closure of the 50-kDa cleft.
Figure 2: Nucleotide-binding site and distortion of the β-sheet at the interface of the N-terminal and upper 50-kDa subdomains.
Figure 3: The actin–myosin interface.

Similar content being viewed by others

References

  1. Holmes, K. C. & Geeves, M. A. Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68, 687–728 (1999)

    Article  Google Scholar 

  2. Houdusse, A. & Sweeney, H. L. Myosin motors: missing structures and hidden springs. Curr. Opin. Struct. Biol. 11, 182–194 (2001)

    Article  CAS  Google Scholar 

  3. Mehta, A. D. E. et al. Myosin V is a processive actin-based motor. Nature 400, 590–593 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Purcell, T. J., Morris, C., Spudich, J. A. & Sweeney, H. L. Role of the lever arm in the processive stepping of myosin V. Proc. Natl Acad. Sci. USA 99, 14159–14164 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Titus, M. A. Myosin V—the multi-purpose transport motor. Curr. Biol. 7, R301–R304 (1997)

    Article  CAS  Google Scholar 

  6. De La Cruz, E. M., Wells, A. L., Safer, D., Ostap, E. M. & Sweeney, H. L. The kinetic mechanism of myosin V. Proc. Natl Acad. Sci. USA 96, 13726–13731 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Dominguez, R., Freyzon, Y., Trybus, K. M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998)

    Article  CAS  Google Scholar 

  8. Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Gyorgyi, A. G. & Cohen, C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470 (1999)

    Article  CAS  Google Scholar 

  9. Whittaker, M. et al. A 35 Å movement of smooth muscle myosin on ADP release. Nature 378, 748–751 (1995)

    Article  ADS  CAS  Google Scholar 

  10. Fisher, A. J. et al. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry 34, 8960–8972 (1995)

    Article  CAS  Google Scholar 

  11. Kollmar, M., Durrwang, U., Kliche, W., Manstein, D. J. & Kull, F. J. Crystal structure of the motor domain of a class-I myosin. EMBO J. 21, 2517–2525 (2002)

    Article  CAS  Google Scholar 

  12. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: A molecular motor. Science 261, 50–58 (1993)

    Article  ADS  CAS  Google Scholar 

  13. Bauer, C. B., Holden, H. M., Thoden, J. B., Smith, R. & Rayment, I. X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J. Biol. Chem. 275, 38494–38499 (2000)

    Article  CAS  Google Scholar 

  14. Coates, J. H., Criddle, A. H. & Geeves, M. A. Pressure-relaxation studies of pyrene-labelled actin and myosin subfragment-1 from rabbit skeletal muscle. Biochem. 232, 351–356 (1985)

    Article  CAS  Google Scholar 

  15. De La Cruz, E. M., Wells, A. L., Sweeney, H. L. & Ostap, E. M. Actin and light chain isoform dependence of myosin V kinetics. Biochemistry 39, 14196–14202 (2000)

    Article  CAS  Google Scholar 

  16. Taylor, E. W. Kinetic studies on the association and dissociation of myosin subfragment 1 and actin. J. Biol. Chem. 266, 294–302 (1991)

    CAS  PubMed  Google Scholar 

  17. Sasaki, N., Ohkura, R. & Sutoh, K. Insertion or deletion of a single residue in the strut sequence of Dictyosteliummyosin II abolishes strong binding to actin. J. Biol. Chem. 275, 38705–38709 (2000)

    Article  CAS  Google Scholar 

  18. Rayment, I. et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–61 (1993)

    Article  ADS  CAS  Google Scholar 

  19. Volkmann, N. et al. Evidence for cleft closure in actomyosin upon ADP release. Nature Struct. Biol. 7, 1147–1155 (2000)

    Article  CAS  Google Scholar 

  20. Yengo, C. M., De La Cruz, E. M., Chrin, L. R., Gaffney, D. P. II & Berger, C. L. Actin-induced closure of the actin-binding cleft of smooth muscle myosin. J. Biol. Chem. 277, 24114–24119 (2002)

    Article  CAS  Google Scholar 

  21. Pasqualato, S., Renault, L. & Cherfils, J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep. 3, 1035–1041 (2002)

    Article  CAS  Google Scholar 

  22. Sasaki, N., Asukagawa, H., Yasuda, R., Hiratsuka, T. & Sutoh, K. Deletion of the myopathy loop of Dictyostelium myosin II and its impact on motor functions. J. Biol. Chem. 274, 37840–37844 (1999)

    Article  CAS  Google Scholar 

  23. Yengo, C. M., De la Cruz, E. M., Safer, D., Ostap, E. M. & Sweeney, H. L. Kinetic characterization of the weak binding states of myosin V. Biochemistry 41, 8508–8517 (2002)

    Article  CAS  Google Scholar 

  24. Spudich, J. A. How molecular motors work. Nature 372, 515–518 (1994)

    Article  ADS  CAS  Google Scholar 

  25. Joel, P. B., Trybus, K. M. & Sweeney, H. L. Two conserved lysines at the 50/20-kDa junction of myosin are necessary for triggering actin activation. J. Biol. Chem. 276, 2998–3003 (2001)

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–325 (1997)

    Article  CAS  Google Scholar 

  27. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  28. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  29. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemistry of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993)

    Article  CAS  Google Scholar 

  30. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (H.L.S.), the CNRS and the ARC (A.H.). We thank D. Picot and the staff of the European Synchrotron Radiation Facility for assistance during data collection. We are also grateful to C. Baldacchino and J. Kibbe for help in protein purification.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Lee Sweeney or Anne Houdusse.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coureux, PD., Wells, A., Ménétrey, J. et al. A structural state of the myosin V motor without bound nucleotide. Nature 425, 419–423 (2003). https://doi.org/10.1038/nature01927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01927

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing