Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epoxidation of polybutadiene by a topologically linked catalyst


Nature has evolved complex enzyme architectures that facilitate the synthesis and manipulation of the biopolymers DNA and RNA, including enzymes capable of attaching to the biopolymer substrate and performing several rounds of catalysis before dissociating1,2,3,4,5. Many of these ‘processive’ enzymes have a toroidal shape and completely enclose the biopolymer while moving along its chain, as exemplified by the DNA enzymes T4 DNA polymerase holoenzyme6 and λ-exonucleoase7. The overall architecture of these systems resembles that of rotaxanes, in which a long molecule or polymer is threaded through a macrocycle. Here we describe a rotaxane that mimics the ability of processive enzymes to catalyse multiple rounds of reaction while the polymer substrate stays bound. The catalyst consists of a substrate binding cavity incorporating a manganese(III) porphyrin complex that oxidizes alkenes within the toroid cavity, provided a ligand has been attached to the outer face of the toroid to both activate the porphyrin complex and shield it from being able to oxidize alkenes outside the cavity. We find that when threaded onto a polybutadiene polymer strand, this catalyst epoxidizes the double bonds of the polymer, thereby acting as a simple analogue of the enzyme systems.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The various catalytic architectures discussed in this work.
Figure 2


  1. Breyer, W. A. & Matthew, B. M. A structural basis for processivity. Protein Sci. 10, 1699–1711 (2001)

    CAS  Article  Google Scholar 

  2. Kool, E. T., Morales, J. C. & Guckian, K. M. Mimicking the structure and function of DNA: Insights into DNA stability and replication. Angew. Chem. Int. Edn Engl. 39, 990–1009 (2000)

    CAS  Article  Google Scholar 

  3. Benkovic, S. J., Valentine, A. M. & Salinas, F. Replisome-mediated DNA replication. Annu. Rev. Biochem. 70, 181–208 (2001)

    CAS  Article  Google Scholar 

  4. Lin, S. M., Lloyd, R. S. & Roberts, R. J. Nucleases, 2nd edn (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1993)

    Google Scholar 

  5. Kool, E. T. Recognition of DNA, RNA, and proteins by circular oligonucleotides. Acc. Chem. Res. 31, 502–510 (1998)

    CAS  Article  Google Scholar 

  6. Trakselis, M. A., Alley, S. C., Abel-Santos, E. & Benkovic, S. J. Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 98, 8368–8375 (2001)

    ADS  CAS  Article  Google Scholar 

  7. Kovall, R. & Matthews, B. W. Toroidal structure of lambda-exonuclease. Science 277, 1824–1827 (1997)

    CAS  Article  Google Scholar 

  8. Ashton, P. R. et al. A light-fueled “piston cyclinder” molecular-level machine. J. Am. Chem. Soc. 120, 11190–11191 (1998)

    CAS  Article  Google Scholar 

  9. Sauvage, J.-P. Transition metal-containing rotaxanes and catenanes in motion: towards molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998)

    CAS  Article  Google Scholar 

  10. Davis, A. P. Synthetic molecular motors. Nature 401, 120–121 (1999)

    ADS  CAS  Article  Google Scholar 

  11. Schalley, C. A., Beizai, K. & Vögtle, F. On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. Acc. Chem. Res. 34, 465–476 (2001)

    CAS  Article  Google Scholar 

  12. Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994)

    ADS  CAS  Article  Google Scholar 

  13. Jiménez, M. C., Dietrich-Buchecker, C. & Sauvage, J.-P. Towards synthetic molecular muscles: Contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Edn Engl. 39, 3284–3287 (2000)

    Article  Google Scholar 

  14. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

    CAS  Article  Google Scholar 

  15. Harada, A., Li, J. & Kamachi, M. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356, 325–327 (1992)

    ADS  CAS  Article  Google Scholar 

  16. Shen, Y. X., Xie, D. & Gibson, H. W. Polyrotaxanes based on polyurethane backbones and crown ether cyclics. 1. Synthesis. J. Am. Chem. Soc. 116, 537–548 (1994)

    CAS  Article  Google Scholar 

  17. Rowan, A. E., Aarts, P. P. M. & Koutstaal, K. W. M. Novel porphyrin-viologen rotaxanes. Chem. Commun., 611–612 (1998)

  18. Elemans, J. A. A. W. et al. Porphyrin clips derived from diphenylglycoluril. Synthesis, conformational analysis, and binding properties. J. Org. Chem. 64, 7009–7016 (1999)

    CAS  Article  Google Scholar 

  19. Meunier, B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem. Rev. 92, 1411–1456 (1992)

    CAS  Article  Google Scholar 

  20. Elemans, J. A. A. W., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. A host-guest epoxidation catalyst with enhanced activity and stability. Chem. Commun., 2443–2444 (2000)

  21. Tornaritis, M. J. & Coutsolelos, A. G. Metalloporphyrins catalyse cis-polybutadiene to polyepoxide. Polymer 33, 1771–1772 (1992)

    CAS  Article  Google Scholar 

  22. Sacco, H. C., Iamamoto, Y. & Lindsay Smith, J. R. Alkene epoxidation with iodosylbenzene catalysed by polyionic supports. J. Chem. Soc. Perkin Trans. 2, 181–190 (2001)

    Article  Google Scholar 

  23. Tsuda, Y., Takahashi, K., Yamaguchi, T., Matsui, S. & Komura, T. Catalytic epoxidation of cyclohexene by covalently linked manganese porphyrin-viologen complex. J. Mol. Catal. A: Chem. 130, 285–295 (1998)

    CAS  Article  Google Scholar 

  24. Hollis, B. W. 25-Hydroxyvitamin D3-1α-hydroxylase in porcine hepatic tissue: Subcellular localization to both mitochondria and microsomes. Proc. Natl Acad. Sci. USA 87, 6009–6013 (1990)

    ADS  CAS  Article  Google Scholar 

  25. Guengerich, F. P. Reactions and significance of cytochrome P-450 enzymes. J. Biol. Chem. 266, 10019–10022 (1991)

    CAS  PubMed  Google Scholar 

  26. Perkins, T. T., Mitsis, P. G., Dalal, R. V. & Block, S. M. Watching enzymes move along DNA one at a time. Biophys. J. 80, 1464 Part 2 (2001)

    Google Scholar 

  27. Brouwer, A. M. et al. Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291, 2124–2128 (2001)

    ADS  CAS  Article  Google Scholar 

  28. Farrington, J. A., Ledwith, A. & Stam, M. F. Cation-radicals: Oxidation of methoxide ion with 1,1v-dimethyl-4,4v-bipyridylium dichloride (paraquat dichloride). J. Chem. Soc. Chem. Commun., 259–260 (1969)

Download references


We thank J. Foekema and I. M. Dixon for preliminary studies and discussions. This research was supported by a NRSC Catalysis grant, a NWO Vidi grant (A.E.R.) and an EC Marie Curie fellowship (P.T.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alan E. Rowan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thordarson, P., Bijsterveld, E., Rowan, A. et al. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing