Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laboratory models of the thermal evolution of the mantle during rollback subduction

Abstract

The subduction of oceanic lithosphere plays a key role in plate tectonics, the thermal evolution of the mantle and recycling processes between Earth's interior and surface. Information on mantle flow, thermal conditions and chemical transport in subduction zones come from the geochemistry of arc volcanoes1,2,3, seismic images4,5 and geodynamic models6,7,8,9,10. The majority of this work considers subduction as a two-dimensional process, assuming limited variability in the direction parallel to the trench. In contrast, observationally based models increasingly appeal to three-dimensional flow associated with trench migration and the sinking of oceanic plates with a translational component of motion11 (rollback). Here we report results from laboratory experiments that reveal fundamental differences in three-dimensional mantle circulation and temperature structure in response to subduction with and without a rollback component. Without rollback motion, flow in the mantle wedge is sluggish, there is no mass flux around the plate and plate edges heat up faster than plate centres. In contrast, during rollback subduction flow is driven around and beneath the sinking plate, velocities increase within the mantle wedge and are focused towards the centre of the plate, and the surface of the plate heats more along the centreline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subduction zone geometry and experimental set-up.
Figure 2: Streak patterns for tracers moving passively with the fluid over a time lapse interval (Δtp) reveal circulation patterns (see Methods).
Figure 3: Displacement of passive Delrin beads in the shallow wedge owing to rollback.
Figure 4: SST perturbation versus lateral distance across the plate.

Similar content being viewed by others

References

  1. McCulloch, M. T. & Gamble, J. A. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 102, 358–374 (1991)

    Article  CAS  Google Scholar 

  2. Woodhead, J., Eggins, S. & Gamble, J. High field strength and transition element systematics in island arc and back-arc basin basalts: Evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet. Sci. Lett. 114, 491–504 (1993)

    Article  CAS  Google Scholar 

  3. Turner, S. & Hawkesworth, C. Constraints on flux rates and mantle dynamics beneath island arcs from Tonga-Kermadec lava geochemistry. Nature 389, 568–573 (1997)

    Article  CAS  Google Scholar 

  4. Zhao, D., Hasegawa, A. & Horiuchi, S. Tomographic imaging of P and S wave velocity structure beneath Northeastern Japan. J. Geophys. Res. 97, 19909–19928 (1992)

    Article  Google Scholar 

  5. Koper, K. D., Weins, D. A., Dorman, L. M., Hildebrand, J. A. & Webb, S. C. Constraints on the origin of slab and wedge anomalies in Tonga from the ratio of S to P anomalies. J. Geophys. Res. 104, 15089–15104 (1999)

    Article  Google Scholar 

  6. Hsui, A. T., Marsh, B. D. & Toksoz, M. N. On melting of the subducted oceanic crust: Effects of subduction induced mantle flow. Tectonophysics 99, 207–220 (1983)

    Article  Google Scholar 

  7. Davies, J. H. & Stevenson, D. J. Physical model of source region of subduction zone volcanics. J. Geophys. Res. 97, 2037–2070 (1992)

    Article  Google Scholar 

  8. Peacock, S., Rushmer, T. & Thompson, A. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett. 121, 227–244 (1994)

    Article  CAS  Google Scholar 

  9. Kincaid, C. & Sacks, I. S. The thermal and dynamical evolution of the upper mantle in subduction zones. J. Geophys. Res. 102, 12295–12315 (1997)

    Article  Google Scholar 

  10. Kincaid, C. & Hall, P. S. The role of back-arc spreading in circulation and melting at subduction zones. J. Geophys. Res. 208, 2240–2254 (2003)

    Google Scholar 

  11. Elssasser, W. M. Sea floor spreading and thermal convection. J. Geophys. Res. 76, 1101–1111 (1971)

    Article  Google Scholar 

  12. Klosko, E. et al. Upper mantle flow in the New Zealand region from seismic anisotropy. Geophys. Res. Lett. 26, 1497–1500 (1999)

    Article  Google Scholar 

  13. Russo, R. & Silver, P. Cordillera formation, mantle dynamics and the Wilson cycle. Geology 24, 511–514 (1996)

    Article  Google Scholar 

  14. Peyton, V. et al. Mantle flow at a slab edge: Seismic anisotropy in the Kamchatka region. Geophys. Res. Lett. 28, 379–382 (2001)

    Article  Google Scholar 

  15. Pearce, J. A., Leat, P. T., Barker, P. F. & Millar, I. L. Geochemical tracing of Pacific-to-Atlantic upper-mantle flow through the Drake Passage. Nature 410, 457–461 (2001)

    Article  CAS  Google Scholar 

  16. Turner, S. & Hawkesworth, C. Using geochemistry to map mantle flow beneath the Lau Basin. Geology 26, 1019–1022 (1998)

    Article  CAS  Google Scholar 

  17. Wendt, J. I., Regelous, M., Collerson, K. D. & Ewart, A. Evidence for a contribution from two mantle plumes to the island-arc lavas from northern Tonga. Geology 25, 611–614 (1997)

    Article  CAS  Google Scholar 

  18. Yogodzinski, G. M. et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 409, 500–504 (2001)

    Article  CAS  Google Scholar 

  19. Gvirtzman, Z. & Nur, A. The formation of Mount Etna as the consequence of slab rollback. Nature 401, 782–785 (1999)

    Article  CAS  Google Scholar 

  20. Hudson, J. D. & Dennis, S. C. R. The flow of a viscous incompressible fluid past a normal flat plate at low and intermediate Reynolds numbers: The wake. J. Fluid Mech. 160, 369–383 (1985)

    Article  MathSciNet  Google Scholar 

  21. Garfunkel, Z., Anderson, C. A. & Schubert, G. Mantle circulation and the lateral migration of subducted slabs. J. Geophys. Res. 91, 7205–7223 (1986)

    Article  Google Scholar 

  22. Ribe, N. Mantle flow induced by back-arc spreading. Geophys. J. Int. 98, 85–91 (1989)

    Article  Google Scholar 

  23. Kincaid, C. & Olson, P. An experimental study of subduction and slab migration. J. Geophys. Res. 92, 13832–13840 (1987)

    Article  Google Scholar 

  24. Guillou-Frottier, L., Buttles, J. & Olson, P. Laboratory experiments on the structure of subducted lithosphere. Earth Planet. Sci. Lett. 133, 19–34 (1995)

    Article  CAS  Google Scholar 

  25. Griffiths, R. W., Hackney, R. I. & van der Hilst, R. D. A laboratory investigation of effects of trench migration on the descent of subducted slabs. Earth Planet. Sci. Lett. 133, 1–17 (1995)

    Article  CAS  Google Scholar 

  26. Buttles, J. & Olson, P. A laboratory model of subduction zone anisotropy. Earth Planet. Sci. Lett. 164, 245–262 (1998)

    Article  CAS  Google Scholar 

  27. Sisson, T. W. & Bronto, S. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391, 883–886 (1998)

    Article  CAS  Google Scholar 

  28. Drummond, M. S. & Defant, M. J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res. 95, 21503–21521 (1990)

    Article  Google Scholar 

  29. Sigmarsson, O., Martin, H. & Knowles, J. Melting of a subducting oceanic crust from U-Th disequilibria in austral Andean lavas. Nature 394, 566–569 (1998)

    Article  CAS  Google Scholar 

  30. van der Hilst, R. & Seno, T. Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth Planet. Sci. Lett. 120, 395–407 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This work benefited from the Margins TEI, held in August 2000 in Eugene, Oregon. We thank the Equipment Development Laboratory at URI-GSO, and T. Beasley and C. Morgan for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kincaid.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kincaid, C., Griffiths, R. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425, 58–62 (2003). https://doi.org/10.1038/nature01923

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01923

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing