Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α


Oleylethanolamide (OEA) is a naturally occurring lipid that regulates satiety and body weight1,2. Although structurally related to the endogenous cannabinoid anandamide, OEA does not bind to cannabinoid receptors and its molecular targets have not been defined. Here we show that OEA binds with high affinity to the peroxisome-proliferator-activated receptor-α (PPAR-α), a nuclear receptor that regulates several aspects of lipid metabolism. Administration of OEA produces satiety and reduces body weight gain in wild-type mice, but not in mice deficient in PPAR-α. Two distinct PPAR-α agonists have similar effects that are also contingent on PPAR-α expression, whereas potent and selective agonists for PPAR-γ and PPAR-β/δ are ineffective. In the small intestine of wild-type but not PPAR-α-null mice, OEA regulates the expression of several PPAR-α target genes: it initiates the transcription of proteins involved in lipid metabolism and represses inducible nitric oxide synthase, an enzyme that may contribute to feeding stimulation. Our results, which show that OEA induces satiety by activating PPAR-α, identify an unexpected role for this nuclear receptor in regulating behaviour, and raise possibilities for the treatment of eating disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: OEA is a high-affinity PPAR-α agonist.
Figure 2: PPAR-α mediates the appetite-suppressing and weight-reducing effects of OEA.
Figure 3: PPAR-α agonists mimic the appetite-suppressing effects of OEA.
Figure 4: OEA regulates gene expression through PPAR-α activation.
Figure 5: Circadian regulation of intestinal OEA synthesis and PPAR-α expression.


  1. Rodríguez de Fonseca, F. et al. An anorexic lipid mediator regulated by feeding. Nature 414, 209–212 (2001)

    Article  ADS  Google Scholar 

  2. Gaetani, S., Oveisi, F. & Piomelli, D. Modulation of meal pattern in the rat by the anorexic lipid mediator oleoylethanolamide. Neuropsychopharmacology 28, 1311–1316 (2003)

    Article  CAS  Google Scholar 

  3. Göttlicher, M., Widmark, E., Li, Q. & Gustafsson, J. A. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc. Natl Acad. Sci. USA 89, 4653–4657 (1992)

    Article  ADS  Google Scholar 

  4. Kliewer, S. A. et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl Acad. Sci. USA 94, 4318–4323 (1997)

    Article  ADS  CAS  Google Scholar 

  5. Forman, B. M., Chen, J. & Evans, R. M. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc. Natl Acad. Sci. USA 94, 4312–4317 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Desvergne, B. & Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688 (1999)

    CAS  PubMed  Google Scholar 

  7. Chawla, A., Repa, J. J., Evans, R. M. & Mangelsdorf, D. J. Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866–1870 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Berger, J. & Moller, D. E. The mechanisms of action of PPARs. Annu. Rev. Med. 53, 409–435 (2002)

    Article  CAS  Google Scholar 

  9. Lazennec, G., Canaple, L., Saugy, D. & Wahli, W. Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators. Mol. Endocrinol. 14, 1962–1975 (2000)

    Article  CAS  Google Scholar 

  10. Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992)

    Article  ADS  CAS  Google Scholar 

  11. Willson, T. M., Brown, P. J., Sternbach, D. D. & Henke, B. R. The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43, 527–550 (2000)

    Article  CAS  Google Scholar 

  12. Brown, P. J. et al. Chemical compounds as selective activators of PPAR-α. PCT Int. Appl. 32 (2000)

  13. Lee, S. S. et al. Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell. Biol. 15, 3012–3022 (1995)

    Article  CAS  Google Scholar 

  14. Butler, A. A. & Cone, R. D. Knockout models resulting in the development of obesity. Trends Genet. 17, S50–S54 (2001)

    Article  CAS  Google Scholar 

  15. Oliver, W. R. Jr et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc. Natl Acad. Sci. USA 98, 5306–5311 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Chang, A. Y., Wyse, B. M., Gilchrist, B. J., Peterson, T. & Diani, A. R. Ciglitazone, a new hypoglycemic agent. I. Studies in ob/ob and db/db mice, diabetic Chinese hamsters, and normal and streptozotocin-diabetic rats. Diabetes 32, 830–838 (1983)

    Article  CAS  Google Scholar 

  17. Martin, G., Schoonjans, K., Lefebvre, A. M., Staels, B. & Auwerx, J. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARα and PPARγ activators. J. Biol. Chem. 272, 28210–28217 (1997)

    Article  CAS  Google Scholar 

  18. Escher, P. et al. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142, 4195–4202 (2001)

    Article  CAS  Google Scholar 

  19. Motojima, K., Passilly, P., Peters, J. M., González, F. J. & Latruffe, N. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor α and γ activators in a tissue- and inducer-specific manner. J. Biol. Chem. 273, 16710–16714 (1998)

    Article  CAS  Google Scholar 

  20. Colville-Nash, P. R., Qureshi, S. S. & Willoughby, D. A. Inhibition of inducible nitric oxide synthase by peroxisome proliferator-activated receptor agonist: correlation of induction of heme oxygenase 1. J. Immunol. 161, 978–984 (1998)

    CAS  PubMed  Google Scholar 

  21. Best, J. D. & Jenkins, A. J. Novel agents for managing dyslipidaemia. Expert Opin. Invest. Drugs 10, 1901–1911 (2001)

    Article  CAS  Google Scholar 

  22. Cleary, M. P., Kasiske, B., O'Donnell, M. P. & Keane, W. F. Effect of long-term clofibric acid treatment on serum and tissue lipid and cholesterol levels in obese Zucker rats. Atherosclerosis 66, 107–112 (1987)

    Article  CAS  Google Scholar 

  23. Chaput, E., Saladin, R., Silvestre, M. & Edgar, A. D. Fenofibrate and rosiglitazone lower serum triglycerides with opposing effects on body weight. Biochem. Biophys. Res. Commun. 271, 445–450 (2000)

    Article  CAS  Google Scholar 

  24. Akiyama, T. E. et al. Peroxisome proliferator-activated receptor-α regulates lipid homeostasis, but is not associated with obesity: studies with congenic mouse lines. J. Biol. Chem. 276, 39088–39093 (2001)

    Article  CAS  Google Scholar 

  25. Sticker-krongrad, A., Beck, B. & Burlet, C. Nitric oxide mediates hyperphagia of obese Zucker rats: relation to specific changes in the microstructure of feeding behavior. Life Sci. 58, PL9–PL15 (1996)

    Google Scholar 

  26. Janero, D. R. Nutritional aspects of nitric oxide: human health implication and therapeutic opportunities. Nutrition 17, 896–903 (2001)

    Article  CAS  Google Scholar 

  27. Chao, E. Y.-H. et al. Thiazoles and oxazole derivatives and their pharmaceutical use. PCT Int. Appl. 83 (2001).

  28. Giuffrida, A., Rodríguez de Fonseca, F. & Piomelli, D. Quantification of bioactive acylethanolamides in rat plasma by electrospray mass spectrometry. Anal. Biochem. 280, 87–93 (2000)

    Article  CAS  Google Scholar 

  29. Schmittgen, T. D. et al. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285, 194–204 (2000)

    Article  CAS  Google Scholar 

  30. Gregoire, F. M. et al. Diet-induced obesity and hepatic gene expression alterations in C57BL/6J and ICAM-1-deficient mice. Am. J. Physiol. Endocrinol. Metab. 282, E703–E713 (2002)

    Article  CAS  Google Scholar 

Download references


We thank L. Stein for comments; L. Giron, N. Heyrani, N. Izadi and K. Nguyen for help with experiments; M. Guzmán for critically reading the manuscript; and F. Valiño for synthesizing fatty acid ethanolamides. This research was supported by grants (to D.P.) from the National Institute on Drug Abuse. Further support came from the Fondo de Investigación Sanitaria.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daniele Piomelli.

Ethics declarations

Competing interests

A patent application on this subject been filed on behalf of the University of California Irvine.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Gaetani, S., Oveisi, F. et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425, 90–93 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing