Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H2

Abstract

Molecular hydrogen (H2) is the second most abundant trace gas in the atmosphere after methane1 (CH4). In the troposphere, the D/H ratio of H2 is enriched by 120‰ relative to the world's oceans2,3,4. This cannot be explained by the sources of H2 for which the D/H ratio has been measured to date (for example, fossil fuels and biomass burning)5,6. But the isotopic composition of H2 from its single largest source—the photochemical oxidation of methane—has yet to be determined. Here we show that the D/H ratio of stratospheric H2 develops enrichments greater than 440‰, the most extreme D/H enrichment observed in a terrestrial material. We estimate the D/H ratio of H2 produced from CH4 in the stratosphere, where production is isolated from the influences of non-photochemical sources and sinks, showing that the chain of reactions producing H2 from CH4 concentrates D in the product H2. This enrichment, which we estimate is similar on a global average in the troposphere, contributes substantially to the D/H ratio of tropospheric H2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified schematic diagram of the reaction pathway from methane to molecular hydrogen for both normal CH4 and isotopically substituted CH3D.
Figure 2: Methane and hydrogen mixing ratios in the stratosphere relative to nitrous oxide and mean age.
Figure 3: Plot of δDH2 (open symbols) and δDCH4 (filled circles) in the stratosphere against methane mixing ratios.

Similar content being viewed by others

References

  1. Novelli, P. C. et al. Molecular hydrogen in the troposphere: Global distribution and budget. J. Geophys. Res. 104, 30427–30444 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Ehhalt, D., Israel, G., Roether, W. & Stich, W. Tritium and deuterium content of atmospheric hydrogen. J. Geophys. Res. 68, 3747–3751 (1963)

    Article  ADS  CAS  Google Scholar 

  3. Gonsior, B., Friedman, I. & Lindenmayr, G. New tritium and deuterium measurements in atmospheric hydrogen. Tellus XVIII, 256–261 (1966)

    ADS  Google Scholar 

  4. Friedman, I. & Scholz, T. G. Isotopic composition of atmospheric hydrogen, 1967–1969. J. Geophys. Res. 79, 785–788 (1974)

    Article  ADS  CAS  Google Scholar 

  5. Gerst, S. & Quay, P. Deuterium component of the global molecular hydrogen cycle. J. Geophys. Res. 106, 5021–5031 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Rahn, T., Kitchen, N. & Eiler, J. M. D/H ratios of atmospheric H2 in urban air: Results using new methods for analysis of nano-molar H2 samples. Geochim. Cosmochim. Acta 66, 2475–2481 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Blake, D. R. & Rowland, F. S. Urban leakage of liquified petroleum gas and its impact on Mexico City air quality. Science 269, 953–956 (1995)

    Article  ADS  CAS  Google Scholar 

  8. Chen, T. Y., Simpson, I. J., Blake, D. R. & Rowland, F. S. Impact of the leakage of liquefied petroleum gas (LPG) on Santiago air quality. Geophys. Res. Lett. 28, 2193–2196 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Gerst, S. & Quay, P. The deuterium content of atmospheric molecular hydrogen: Method and initial measurements. J. Geophys. Res. 105, 26433–26445 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Ehhalt, D. H., Davidson, J. A., Cantrell, C. A., Friedman, I. & Tyler, S. The kinetic isotope effect in the reaction of H2 with OH. J. Geophys. Res. 94, 9831–9836 (1989)

    Article  ADS  CAS  Google Scholar 

  11. Khalil, M. A. K. & Rasmussen, R. A. Global increase of atmospheric molecular hydrogen. Nature 347, 743–745 (1990)

    Article  ADS  CAS  Google Scholar 

  12. Rice, A. L., Tyler, S., McCarthy, M. C., Boering, K. A. & Atlas, E. The carbon and hydrogen isotopic composition of stratospheric methane: Part 1. High-precision observations from the NASA ER-2 aircraft. J. Geophys. Res. doi:10.1029/2002JD003042 (in the press)

  13. Schauffler, S. M. et al. Chlorine budget and partitioning during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE). J. Geophys. Res. 108, doi:101029/2001JGD002040 (2003)

  14. Boering, K. A. et al. Stratospheric mean ages and transport rates from observations of carbon dioxide and nitrous oxide. Science 274, 1340–1343 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Hurst, D. F. et al. Closure of the total hydrogen budget of the northern extratropical lower stratosphere. J. Geophys. Res. 104, 8191–8200 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Robert, F. & Epstein, S. The concentration and isotopic composition of hydrogen, carbon, and nitrogen in carbonaceous meteorites. Geochim. Cosmochim. Acta 46, 81–95 (1982)

    Article  ADS  CAS  Google Scholar 

  17. Leshin, L. A., Epstein, S. & Stolper, E. M. Hydrogen isotope geochemistry of SNC meteorites. Geochim. Cosmochim. Acta 60, 2635–2650 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Moortgat, G., Seiler, W. & Warneck, P. Photodissociation of HCHO in air—CO and H2 quantum yields at 220 and 300 K. J. Chem. Phys. 78, 1185–1190 (1983)

    Article  ADS  CAS  Google Scholar 

  19. Brasseur, G. & Solomon, S. Aeronomy of the Middle Atmosphere (Reidel, Dordrecht, 1984)

    Book  Google Scholar 

  20. DeMore, W. B. et al. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling 278 (NASA-JPL, Pasadena, 1997).

  21. Talukdar, R. K. et al. Kinetics of hydroxyl radical reactions with isotopically labeled hydrogen. J. Phys. Chem. 100, 3037–3043 (1996)

    Article  CAS  Google Scholar 

  22. Talukdar, R. K. & Ravishankara, A. R. Rate coefficients for O(1D) + H2, D2, HD reactions and H atom yield in O(1D) + HD reaction. Chem. Phys. Lett. 253, 177–183 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Taatjes, C. A. Infrared frequency-modulation measurements of absolute rate coefficients for Cl + HD → HCl(DCl) + D(H) between 295 and 700 K. Chem. Phys. Lett. 306, 33–40 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Hauglustaine, D. A. & Ehhalt, D. H. A three-dimensional model of molecular hydrogen in the troposphere. J. Geophys. Res. 107, doi:10.1029/2001JD001156 (2002)

  25. Holton, J. R. On the global exchange of mass between the stratosphere and troposphere. J. Atmos. Sci. 47, 392–395 (1990)

    Article  ADS  Google Scholar 

  26. Newman, P. A. et al. An overview of the SOLVE/THESEO 2000 campaign. J. Geophys. Res. 107, doi:101029/2001JD001303 (2002)

  27. Saueressig, G. et al. Carbon 13 and D kinetic isotope effects in the reactions of CH4 with O(1D) and OH: New laboratory measurements and their implications for the isotopic composition of stratospheric methane. J. Geophys. Res. 106, 23127–23138 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Saueressig, G., Bergamaschi, P., Crowley, J. N., Fischer, H. & Harris, G. W. D/H kinetic isotope effect in the reaction CH4 + Cl. Geophys. Res. Lett. 23, 3619–3622 (1996)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Kitchen for assistance in the laboratory. This study was supported in part by the NSF (T.A.R., K.A.B. and S.T.), the Davidow Fund and General Motors Corp. (J.M.E), the David and Lucile Packard Foundation (K.A.B.) and the NASA Upper Atmosphere Research Program (P.O.W., K.A.B, E.A, S.S. and S.D.). The National Centre for Atmospheric Research is operated by the University Corporation for Atmospheric Research under the sponsorship of the NSF. T.R. is the recipient of a Frederick Reines postdoctoral fellowship in experimental sciences awarded by Los Alamos National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thom Rahn.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahn, T., Eiler, J., Boering, K. et al. Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H2. Nature 424, 918–921 (2003). https://doi.org/10.1038/nature01917

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01917

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing