Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlling molecular deposition and layer structure with supramolecular surface assemblies

Abstract

Selective non-covalent interactions have been widely exploited in solution-based chemistry to direct the assembly of molecules into nanometre-sized functional structures such as capsules, switches and prototype machines1,2,3,4,5. More recently, the concepts of supramolecular organization have also been applied to two-dimensional assemblies on surfaces6,7 stabilized by hydrogen bonding8,9,10,11,12,13,14, dipolar coupling15,16,17 or metal co-ordination18. Structures realized to date include isolated rows8,13,14,15, clusters9,10,18 and extended networks10,11,12,17, as well as more complex multi-component arrangements16. Another approach to controlling surface structures uses adsorbed molecular monolayers to create preferential binding sites that accommodate individual target molecules19,20. Here we combine these approaches, by using hydrogen bonding to guide the assembly of two types of molecules into a two-dimensional open honeycomb network that then controls and templates new surface phases formed by subsequently deposited fullerene molecules. We find that the open network acts as a two-dimensional array of large pores of sufficient capacity to accommodate several large guest molecules, with the network itself also serving as a template for the formation of a fullerene layer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembly of a PTCDI–melamine supramolecular network.
Figure 2: Images of C60 heptamers trapped within the ‘nanoscale vessels’.
Figure 3: Images of the C60 honeycomb network.

Similar content being viewed by others

References

  1. Lehn, J. M. Toward complex matter: Supramolecular chemistry and self-organization. Proc. Natl Acad. Sci. USA 99, 4763–4768 (2002)

    Article  ADS  CAS  Google Scholar 

  2. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Edn Engl. 39, 3349–3391 (2000)

    Google Scholar 

  3. Reinhoudt, D. N. & Crego-Calama, M. Synthesis beyond the molecule. Science 295, 2403–2407 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Fujita, M., Fujita, N., Ogura, K. & Yamaguchi, K. Spontaneous assembly of ten components into two interlocked, identical coordination cages. Nature 400, 52–55 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hecht, S. Welding, organizing, and planting organic molecules on substrate surfaces — Promising approaches towards nanoarchitectonics from the bottom up. Angew. Chem. Int. Edn Engl. 42, 24–26 (2003)

    Article  CAS  Google Scholar 

  7. De Feyter, S. & De Schryver, F. C. Two-dimensional supramolecular self-assembly probed by scanning tunnelling microscopy. Chem. Soc. Rev. 32, 139–150 (2003)

    Article  CAS  Google Scholar 

  8. Barth, J. V. et al. Building supramolecular nanostructures at surfaces by hydrogen bonding. Angew. Chem. Int. Edn Engl. 39, 1230–1234 (2000)

    Article  CAS  Google Scholar 

  9. Bohringer, M., Morgenstern, K., Schneider, W. D. & Berndt, R. Separation of a racemic mixture of two-dimensional molecular clusters by scanning tunneling microscopy. Angew. Chem. Int. Edn Engl. 38, 821–823 (1999)

    Article  CAS  Google Scholar 

  10. Furukawa, M., Tanaka, H. & Kawai, T. Formation mechanism of low-dimensional superstructure of adenine molecules and its control by chemical modification: A low-temperature scanning tunneling microscopy study. Surf. Sci. 445, 1–10 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Griessl, S., Lackinger, M., Edelwirth, M., Hietschold, M. & Heckl, W. M. Self-assembled two-dimensional molecular host-guest architectures from trimesic acid. Single Mol. 3, 25–31 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Dmitriev, A., Lin, N., Weckesser, J., Barth, J. V. & Kern, K. Supramolecular assemblies of trimesic acid on a Cu(100) surface. J. Phys. Chem. B 106, 6907–6912 (2002)

    Article  CAS  Google Scholar 

  13. Keeling, D. L. et al. Assembly and processing of hydrogen bond induced supramolecular nanostructures. Nano Lett. 3, 9–12 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Chen, Q., Frankel, D. J. & Richardson, N. V. Self-assembly of adenine on Cu(110) surfaces. Langmuir 18, 3219–3225 (2002)

    Article  CAS  Google Scholar 

  15. Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y. & Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413, 619–621 (2001)

    Article  ADS  CAS  Google Scholar 

  16. de Wild, M. et al. A novel route to molecular self-assembly: Self-intermixed monolayer phases. ChemPhysChem 3, 881–885 (2002)

    Article  CAS  Google Scholar 

  17. Berner, S. et al. Time evolution analysis of a 2D solid-gas equilibrium: A model system for molecular adsorption and diffusion. Chem. Phys. Lett. 348, 175–181 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Lin, N., Dmitriev, A., Weckesser, J., Barth, J. V. & Kern, K. Real-time single-molecule imaging of the formation and dynamics of coordination compounds. Angew. Chem. Int. Edn Engl. 41, 4779–4783 (2002)

    Article  CAS  Google Scholar 

  19. Gimzewski, J. K., Jung, T. A., Cuberes, M. T. & Schlittler, R. R. Scanning tunneling microscopy of individual molecules: Beyond imaging. Surf. Sci. 386, 101–114 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Cuberes, M. T., Schlittler, R. R. & Gimzewski, J. K. Room temperature supramolecular repositioning at molecular interfaces using a scanning tunneling microscope. Surf. Sci. 371, L231–L234 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Paraschiv, V. et al. Molecular “chaperones” guide the spontaneous formation of a 15-component hydrogen-bonded assembly. J. Am. Chem. Soc. 124, 7638–7639 (2002)

    Article  CAS  Google Scholar 

  22. Prins, L. J., Reinhoudt, D. N. & Timmerman, P. Noncovalent synthesis using hydrogen bonding. Angew. Chem. Int. Edn Engl. 40, 2383–2426 (2001)

    Google Scholar 

  23. Wan, K. J., Lin, X. F. & Nogami, J. Surface reconstructions in the Ag/Si(111) system. Phys. Rev. B 47, 13700–13712 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Upward, M. D., Beton, P. H. & Moriarty, P. Adsorption of cobalt phthalocyanine on Ag terminated Si(111). Surf. Sci. 441, 21–25 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Upward, M. D., Moriarty, P. & Beton, P. H. Double domain ordering and selective removal of C60 on Ag/Si(111)-√3 × √3R30°. Phys. Rev. B 56, R1704–R1707 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Nakayama, T., Onoe, J., Takeuchi, K. & Aono, M. Weakly bound and strained C60 monolayer on the Si(111)-√3 × √3R30°-Ag substrate surface. Phys. Rev. B 59, 12627–12631 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Takahashi, T., Nakatani, S., Okamoto, N., Ishikawa, T. & Kikuta, S. A Study of the Si(111)-√3 × √3-Ag surface by transmission-X-ray diffraction and X-ray-diffraction topography. Surf. Sci. 242, 54–58 (1991)

    Article  ADS  CAS  Google Scholar 

  28. Katayama, M., Williams, R. S., Kato, M., Nomura, E. & Aono, M. Structure analysis of the Si(111)-√3 × √3R30°-Ag Surface. Phys. Rev. Lett. 66, 2762–2765 (1991)

    Article  ADS  CAS  Google Scholar 

  29. Uder, B., Ludwig, C., Petersen, J., Gompf, B. & Eisenmenger, W. STM characterization of organic molecules on H-terminated Si(111). Z. Phys. B 97, 389–390 (1995)

    Article  ADS  CAS  Google Scholar 

  30. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. The development and use of quantum-mechanical molecular models, 76. AM1 — a new general-purpose quantum-mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Moriarty and J. O'Shea for discussions, and N. Besley and P. Gill for advice on numerical calculations. This work was supported by the UK Engineering and Physical Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neil R. Champness or Peter H. Beton.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theobald, J., Oxtoby, N., Phillips, M. et al. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003). https://doi.org/10.1038/nature01915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01915

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing