Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of Lps2 as a key transducer of MyD88-independent TIR signalling

Abstract

In humans, ten Toll-like receptor (TLR) paralogues sense molecular components of microbes, initiating the production of cytokine mediators that create the inflammatory response. Using N-ethyl-N-nitrosourea, we induced a germline mutation called Lps2, which abolishes cytokine responses to double-stranded RNA and severely impairs responses to the endotoxin lipopolysaccharide (LPS), indicating that TLR3 and TLR4 might share a specific, proximal transducer. Here we identify the Lps2 mutation: a distal frameshift error in a Toll/interleukin-1 receptor/resistance (TIR) adaptor protein known as Trif or Ticam-1. TrifLps2 homozygotes are markedly resistant to the toxic effects of LPS, and are hypersusceptible to mouse cytomegalovirus, failing to produce type I interferons when infected. Compound homozygosity for mutations at Trif and MyD88 (a cytoplasmic TIR-domain-containing adaptor protein) loci ablates all responses to LPS, indicating that only two signalling pathways emanate from the LPS receptor. However, a Trif-independent cell population is detectable when TrifLps2 mutant macrophages are stimulated with LPS. This reveals that an alternative MyD88-dependent ‘adaptor X’ pathway is present in some, but not all, macrophages, and implies afferent immune specialization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: TLR3 and TLR4 specificity of the Lps2 mutation.
Figure 2: Lps2 is required for MyD88-independent TLR3 and TLR4 signalling in macrophages.
Figure 3: Responses to bacterial and viral stimuli in Lps2 homozygotes.
Figure 4: Rescue of poly(I:C) responsiveness in Lps2 homozygous mutant macrophages by transfection with normal cDNA.
Figure 5: Single and compound homozygosity for MyD88 and Trif mutations: evidence for a bifid LPS response pathway and a unitary dsRNA response pathway.
Figure 6: Evidence for functionally distinct populations of macrophages.

References

  1. 1

    Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999)

    CAS  Article  Google Scholar 

  4. 4

    Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940 (2001)

    CAS  Article  Google Scholar 

  7. 7

    Takeuchi, O. et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10–14 (2002)

    CAS  Article  Google Scholar 

  8. 8

    Beutler, B. Sepsis begins at the interface of pathogen and host. Biochem. Soc. Trans. 29, 853–859 (2001)

    CAS  Article  Google Scholar 

  9. 9

    Beutler, B. & Rehli, M. Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr. Top. Microbiol. Immunol. 270, 1–21 (2002)

    CAS  PubMed  Google Scholar 

  10. 10

    Suzuki, N. et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416, 750–756 (2002)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999)

    CAS  Article  Google Scholar 

  13. 13

    Kawai, T. et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167, 5887–5894 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251 (2002)

    CAS  Article  Google Scholar 

  15. 15

    Fitzgerald, K. A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Horng, T., Barton, G. M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signaling pathway. Nature Immunol. 2, 835–841 (2001)

    CAS  Article  Google Scholar 

  17. 17

    Horng, T., Barton, G. M., Flavell, R. A. & Medzhitov, R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329–333 (2002)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Hoebe, K., Du, X., Goode, J., Mann, N. & Beutler, B. Lps2: a new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening. J. Endotoxin Res. 9, 250–255 (2003)

    CAS  Article  Google Scholar 

  20. 20

    Heppner, G. & Weiss, D. W. High susceptibility of strain A mice to endotoxin and endotoxin-red blood cell mixtures. J. Bacteriol. 90, 696–703 (1965)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Karaghiosoff, M. et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nature Immunol. 4, 471–477 (2003)

    CAS  Article  Google Scholar 

  22. 22

    Brown, M. G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Smith, H. R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl Acad. Sci. USA 99, 8826–8831 (2002)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002)

    CAS  Article  Google Scholar 

  25. 25

    Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nature Immunol. 4, 161–171 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Xu, Y. et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408, 111–115 (2000)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Du, X., Poltorak, A., Silva, M. & Beutler, B. Analysis of Tlr4-mediated LPS signal transduction in macrophages by mutational modification of the receptor. Blood Cells Mol. Dis. 25, 328–338 (1999)

    CAS  Article  Google Scholar 

  28. 28

    Fitzgerald, K. A. et al. IKKɛ and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunol. 4, 491–496 (2003)

    CAS  Article  Google Scholar 

  29. 29

    Kim, S. O., Ono, K. & Han, J. Apoptosis by pan-caspase inhibitors in lipopolysaccharide-activated macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L1095–L1105 (2001)

    CAS  Article  Google Scholar 

  30. 30

    Iwamura, T. et al. Induction of IRF-3/-7 kinase and NF-κB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 6, 375–388 (2001)

    CAS  Article  Google Scholar 

  31. 31

    Orange, J. S. & Biron, C. A. Characterization of early IL-12, IFN-αβ, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J. Immunol. 156, 4746–4756 (1996)

    CAS  PubMed  Google Scholar 

  32. 32

    Poltorak, A. et al. Genetic and physical mapping of the Lps locus—identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol. Dis. 24, 340–355 (1998)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Akira for providing MyD88-knockout mice for use in these studies; S. Kusumoto for providing synthetic lipid A; C. Galanos for providing highly purified LPS; and O. Haller for discussions. This work was supported by funding from NIH grants and by a grant from DARPA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Beutler.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoebe, K., Du, X., Georgel, P. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003). https://doi.org/10.1038/nature01889

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing