Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complex between nidogen and laminin fragments reveals a paradigmatic β-propeller interface

Abstract

Basement membranes are fundamental to tissue organization and physiology in all metazoans. The interaction between laminin and nidogen is crucial to the assembly of basement membranes1,2,3,4. The structure of the interacting domains reveals a six-bladed Tyr-Trp-Thr-Asp (YWTD) β-propeller domain in nidogen bound to laminin epidermal-growth-factor-like (LE) modules III3–5 in laminin (LE3–5). Laminin LE module 4 binds to an amphitheatre-shaped surface on the pseudo-6-fold axis of the β-propeller, and LE module 3 binds over its rim. A Phe residue that shutters the water-filled central aperture of the β-propeller, the rigidity of the amphitheatre, and high shape complementarity enable the construction of an evolutionarily conserved binding surface for LE4 of unprecedentedly high affinity for its small size5. Hypermorphic mutations in the Wnt co-receptor LRP5 (refs 6–9) suggest that a similar YWTD β-propeller interface is used to bind ligands that function in developmental pathways. A related interface, but shifted off-centre from the pseudo-6-fold axis and lacking the shutter over the central aperture, is used in the low-density lipoprotein receptor for an intramolecular interaction that is regulated by pH in receptor recycling10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nidogen and laminin fragment complexes.
Figure 2: The nidogen β-propeller complex with laminin modules LE3–5 and comparison with the LDLR β-propeller.
Figure 3: Sequence alignment.
Figure 4: The nidogen–laminin interaction and comparison with the interaction in the LDLR.

Similar content being viewed by others

References

  1. Hynes, R. O. & Zhao, Q. The evolution of cell adhesion. J. Cell Biol. 150, F89–F96 (2000)

    Article  CAS  Google Scholar 

  2. Mayer, U., Kohfeldt, E. & Timpl, R. Structural and genetic analysis of laminin–nidogen interaction. Ann. N.Y. Acad. Sci. 857, 130–142 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Timpl, R. in Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins (eds Kreis, T. & Vale, R. D.) 455–457 (Oxford Univ. Press, 1999)

    Google Scholar 

  4. Willem, M. et al. Specific ablation of the nidogen-binding site in the laminin γ1 chain interferes with kidney and lung development. Development 129, 2711–2722 (2002)

    CAS  PubMed  Google Scholar 

  5. Lo Conte, L., Chothia, C. & Janin, J. The atomic structure of protein–protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999)

    Article  CAS  Google Scholar 

  6. Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002)

    Article  CAS  Google Scholar 

  7. Van Wesenbeeck, L. et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am. J. Hum. Genet. 72, 763–771 (2003)

    Article  CAS  Google Scholar 

  8. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001)

    Article  CAS  Google Scholar 

  9. Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002)

    Article  CAS  Google Scholar 

  10. Rudenko, G. et al. Structure of the LDL receptor extracellular domain at endosomal pH. Science 298, 2353–2358 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Springer, T. A. An extracellular β-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. J. Mol. Biol. 283, 837–862 (1998)

    Article  CAS  Google Scholar 

  12. Mayer, U. et al. A single EGF-like motif of laminin is responsible for high affinity nidogen binding. EMBO J. 12, 1879–1885 (1993)

    Article  CAS  Google Scholar 

  13. Poschl, E., Fox, J. W., Block, D., Mayer, U. & Timpl, R. Two non-contiguous regions contribute to nidogen binding to a single EGF-like motif of the laminin gamma 1 chain. EMBO J. 13, 3741–3747 (1994)

    Article  CAS  Google Scholar 

  14. Poschl, E. et al. Site-directed mutagenesis and structural interpretation of the nidogen binding site of the laminin γ1 chain. EMBO J. 15, 5154–5159 (1996)

    Article  CAS  Google Scholar 

  15. Murshed, M. et al. The absence of nidogen 1 does not affect murine basement membrane formation. Mol. Cell. Biol. 20, 7007–7012 (2000)

    Article  CAS  Google Scholar 

  16. Dong, L. et al. Neurologic defects and selective disruption of basement membranes in mice lacking entactin-1/nidogen-1. Lab. Invest. 82, 1617–1630 (2002)

    Article  CAS  Google Scholar 

  17. Schymeinsky, J. et al. Gene structure and functional analysis of the mouse nidogen-2 gene: Nidogen-2 is not essential for basement membrane formation in mice. Mol. Cell. Biol. 22, 6820–6830 (2002)

    Article  CAS  Google Scholar 

  18. Stetefeld, J., Mayer, U., Timpl, R. & Huber, R. Crystal structure of three consecutive laminin-type epidermal growth factor-like (LE) modules of laminin γ1 chain harboring the nidogen binding site. J. Mol. Biol. 257, 644–657 (1996)

    Article  CAS  Google Scholar 

  19. Baumgartner, R. et al. Structure of the nidogen binding LE module of the laminin γ1 chain in solution. J. Mol. Biol. 257, 658–668 (1996)

    Article  CAS  Google Scholar 

  20. Bork, P., Downing, A. K., Kieffer, B. & Campbell, I. D. Structure and distribution of modules in extracellular proteins. Q. Rev. Biophys. 29, 119–167 (1996)

    Article  CAS  Google Scholar 

  21. Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993)

    Article  CAS  Google Scholar 

  22. Mayer, U., Mann, K., Fessler, L. I., Fessler, J. H. & Timpl, R. Drosophila laminin binds to mammalian nidogen and to heparan sulfate proteoglycan. Eur. J. Biochem. 245, 745–750 (1997)

    Article  CAS  Google Scholar 

  23. Jeon, H. et al. Implications for familial hypercholesterolemia from structure of the LDL receptor YWTD-EGF domain pair. Nature Struct. Biol. 8, 499–504 (2001)

    Article  CAS  Google Scholar 

  24. Herz, J. & Bock, H. H. Lipoprotein receptors in the nervous system. Annu. Rev. Biochem. 71, 405–434 (2002)

    Article  CAS  Google Scholar 

  25. Strickland, D. K., Gonias, S. L. & Argraves, W. S. Diverse roles for the LDL receptor family. Trends Endocrinol. Metab. 13, 66–74 (2002)

    Article  CAS  Google Scholar 

  26. Kohfeldt, E., Maurer, P., Vannahme, C. & Timpl, R. Properties of the extracellular calcium binding module of the proteoglycan testican. FEBS Lett. 414, 557–561 (1997)

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  28. Navaza, J. Amore: An automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994)

    Article  Google Scholar 

  29. Brunger, A. T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  30. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Zhang and A. Joachimiak for beamline help, and S. Blacklow and R. Timpl for critically reading the manuscript. This work was supported by an NIH grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-huai Wang or Timothy A. Springer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi, J., Yang, Y., Liu, Jh. et al. Complex between nidogen and laminin fragments reveals a paradigmatic β-propeller interface. Nature 424, 969–974 (2003). https://doi.org/10.1038/nature01873

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01873

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing