Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Water-driven structure transformation in nanoparticles at room temperature

Abstract

The thermodynamic behaviour of small particles differs from that of the bulk material by the free energy term γA—the product of the surface (or interfacial) free energy and the surface (or interfacial) area. When the surfaces of polymorphs of the same material possess different interfacial free energies, a change in phase stability can occur with decreasing particle size1,2. Here we describe a nanoparticle system that undergoes structural changes in response to changes in the surface environment rather than particle size. ZnS nanoparticles (average diameter 3 nm) were synthesized in methanol and found to exhibit a reversible structural transformation accompanying methanol desorption, indicating that the particles readily adopt minimum energy structural configurations3,4. The binding of water to the as-formed particles at room temperature leads to a dramatic structural modification, significantly reducing distortions of the surface and interior to generate a structure close to that of sphalerite (tetrahedrally coordinated cubic ZnS). These findings suggest a route for post-synthesis control of nanoparticle structure and the potential use of the nanoparticle structural state as an environmental sensor. Furthermore, the results imply that the structure and reactivity of nanoparticles at planetary surfaces, in interplanetary dust5 and in the biosphere6,7, will depend on both particle size and the nature of the surrounding molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram showing the experiments (A, B and C) performed in this and related work3,4.
Figure 2: A reversible structural change associated with methanol desorption.
Figure 3: The effect of water binding on the structure and size of uncapped ZnS nanoparticles in methanol.
Figure 4: Wide-angle X-ray scattering (WAXS) observation of water binding.
Figure 5: Molecular dynamics predictions of the structure of a 3 nm ZnS nanoparticle.

Similar content being viewed by others

References

  1. McHale, J. M., Auroux, A., Perotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability on nanocrystalline aluminas. Science 277, 788–791 (1997)

    Article  CAS  Google Scholar 

  2. Zhang, H. & Banfield, J. F. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem 8, 2073–2076 (1998)

    Article  CAS  Google Scholar 

  3. Huang, F., Zhang, H., Gilbert, B. & Banfield, J. F. Surface state controlled nanocrystalline ZnS structure transformation. Abstr. Pap. Am. Chem. Soc. 225, 431-Phys (2003)

    Google Scholar 

  4. Huang, F., Zhang, H., Gilbert, B. & Banfield, J. F. Reversible, surface-controlled structure transformation in nanoparticles induced by aggregation-disaggregation. Phys. Rev. Lett. (submitted)

  5. Li, A. & Draine, B. T. Are silicon nanoparticles an interstellar dust component? Astrophys. J. 564, 803–812 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Labrenz, M. et al. Formation of sphalerite (ZhS) deposits in natural biofilms of sulphate-reducing bacteria. Science 270, 1744–1747 (2000)

    Article  ADS  Google Scholar 

  7. Banfield, J. F. & Navrotsky, A. (eds) Nanoparticles and the Environment (Reviews in Mineralogy and Geochemistry, Vol. 44, Mineralogical Society of America, Washington, 2001)

  8. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)

    Article  CAS  Google Scholar 

  9. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Article  CAS  Google Scholar 

  11. Rossetti, R., Hull, R., Gibson, J. M. & Brus, L. E. Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≈15 to 50 Å size range: Evolution from molecular to bulk semiconducting properties. J. Chem. Phys. 82, 552–559 (1985)

    Article  ADS  CAS  Google Scholar 

  12. Jenkins, R. & Snyder, R. L. Introduction to X-ray Powder Diffractometry (Wiley and Sons, New York, 1996)

    Book  Google Scholar 

  13. Wang, Y. R. & Duke, C. B. Atomic and electronic structure of ZnS cleavage surfaces. Phys. Rev. B 36, 2736–2769 (1987)

    Google Scholar 

  14. Raghavachari, K., Jakob, P. & Chabal, Y. J. Step relaxation and surface stress at H-terminated vicinal Si(111). Chem. Phys. Lett. 206, 156–160 (1993)

    Article  ADS  CAS  Google Scholar 

  15. Rühl, E. et al. K-shell spectroscopy of Ar gas clusters. J. Chem. Phys. 98, 6820–6826 (1993)

    Article  ADS  Google Scholar 

  16. Farges, J., de Feraudy, M. F., Raoult, B. & Torchet, G. Noncrystalline structure of argon clusters. II. Multilayer icosahedral structure of ArN clusters 50 < N < 750. J. Phys. Chem. 84, 3491–3501 (1986)

    Article  CAS  Google Scholar 

  17. Muilu, J. & Pakkanen, T. A. Ab initio study of small zinc sulfide crystallites. Surf. Sci. 364, 439–452 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Eichkorn, K. & Ahlrichs, R. Cadmium selenide semiconductor nanocrystals: A theoretical study. Chem. Phys. Lett. 288, 235–242 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Franceschetti, A., Fu, H., Wang, L. W. & Zunger, A. Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys. Rev. B 60, 1819–1829 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Leung, K. & Whaley, K. B. Surface relaxation in CdSe nanocrystals. J. Chem. Phys. 110, 11012–11022 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Rabani, E. Structure and electrostatic properties of passivated CdSe nanocrystals. J. Chem. Phys. 115, 1493–1497 (2001)

    Article  ADS  CAS  Google Scholar 

  22. McGinley, C. et al. Evidence for surface reconstruction on InAs nanocrystals. Phys. Rev. B 65, 245308 (2002)

    Article  ADS  Google Scholar 

  23. Meulenberg, R. W. & Strouse, G. F. Vibrational analysis of nanocrystal CdSe surfaces: Evidence for surface reconstruction. Abstr. Pap. Am. Chem. Soc. 220, 404-Phys (2000)

    Google Scholar 

  24. Hertl, W. Surface chemical properties of zinc sulfide. Langmuir 4, 594–598 (1988)

    Article  CAS  Google Scholar 

  25. Rockenburger, J. et al. The contributions of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals. J. Chem. Phys. 108, 7807–7815 (1998)

    Article  ADS  Google Scholar 

  26. Head-Gordon, T. & Hura, G. Water structure from scattering experiments and simulation. Chem. Rev. 102, 2651–2670 (2002)

    Article  CAS  Google Scholar 

  27. Guinier, A. X-Ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies (Freeman & Co., San Francisco, 1963)

    Google Scholar 

  28. Wright, K. & Jackson, R. A. Computer simulations of the structure and defect properties of zinc sulfide. J. Mater. Chem. 5, 2037–2040 (1995)

    Article  CAS  Google Scholar 

  29. Desgreniers, S., Beaulieu, L. & Leparge, I. Pressure-induced structural changes in ZnS. Phys. Rev. B 61, 8726–8733 (2000)

    Article  ADS  CAS  Google Scholar 

  30. de Leeuw, N. H. & Parker, S. C. Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water. Phys. Rev. B 58, 13901–13908 (1998)

    Article  ADS  CAS  Google Scholar 

  31. Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    Article  CAS  Google Scholar 

  32. Stillinger, F. H. & Rahman, A. Revised central force potentials for water. J. Chem. Phys. 68, 666–670 (1978)

    Article  ADS  CAS  Google Scholar 

  33. Harris, D. J., Brodholt, J. P., Harding, J. H. & Sherman, D. M. Molecular dynamics simulation of aqueous ZnCl2 solutions. Mol. Phys. 99, 825–833 (2001)

    Article  ADS  CAS  Google Scholar 

  34. Stevens, J. E., Chaudhuri, R. K. & Freed, K. F. Global three-dimensional potential energy surfaces of H2S from the ab initio effective valence shell Hamiltonian method. J. Chem. Phys. 105, 8754–8768 (1996)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Alivisatos for access to equipment, and W. Smith, T. R. Forester and D. Fincham for providing MD codes. EXAFS data were acquired on the DCM beamline at the UW-Madison Synchrotron Radiation Center (SRC), and we thank A. Jürgensen. WAXS data were acquired on beamline 11-ID-C at the Advanced Photon Source (APS), and we thank Y. Ren and M. Beno. HRTEM was performed at the National Center for Electron Microscopy, Berkeley, California. We also thank J. Rustad and G. Waychunas for discussions. This work was supported by the US Department of Energy (DOE), the Lawrence Berkeley National Laboratory LDRD, and the US National Science Foundation (NSF). The SRC is supported by the Division of Materials Research of the US NSF. Use of the Advanced Photon Source is supported by the US DOE, Office of Science, Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jillian F. Banfield.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figures 1 and 2: The size of ZnS nanoparticles. (DOC 1166 kb)

41586_2003_BFnature01845_MOESM2_ESM.doc

Supplementary Figure 3 and Table 1: EXAFS analysis of the nanoparticle structure transition associated with methanol desorption. (DOC 201 kb)

41586_2003_BFnature01845_MOESM3_ESM.doc

Supplementary Figure 4: Pair distribution function (PDF) analysis of nanocrystalline ZnS before and after water binding. (DOC 121 kb)

Supplementary Figure 5: X-ray absorption analysis of nanocrystalline ZnS before and after water binding. (DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Gilbert, B., Huang, F. et al. Water-driven structure transformation in nanoparticles at room temperature. Nature 424, 1025–1029 (2003). https://doi.org/10.1038/nature01845

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01845

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing