Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of stomata in sensing and driving environmental change

Abstract

Stomata, the small pores on the surfaces of leaves and stalks, regulate the flow of gases in and out of leaves and thus plants as a whole. They adapt to local and global changes on all timescales from minutes to millennia. Recent data from diverse fields are establishing their central importance to plant physiology, evolution and global ecology. Stomatal morphology, distribution and behaviour respond to a spectrum of signals, from intracellular signalling to global climatic change. Such concerted adaptation results from a web of control systems, reminiscent of a ‘scale-free’ network, whose untangling requires integrated approaches beyond those currently used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Control of stomata by the environment.
Figure 4: Model of guard cell signalling.
Figure 5: Field observations of maximum photosynthesis (A) and stomatal conductance to water vapour (g).

Similar content being viewed by others

References

  1. Raven, J. Selection pressures on stomatal evolution. New Phytol. 153, 371–386 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Willmer, C. & Fricker, M. Stomata 2nd edn (Chapman & Hall, London, 1996)

    Book  Google Scholar 

  3. Jackson, R. B. et al. Water in a changing world. Ecol. Appl. 11, 1027–1045 (2001)

    Article  Google Scholar 

  4. Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol. 7, 357–373 (2001)

    Article  ADS  Google Scholar 

  5. Ciais, P. et al. A three-dimensional synthesis study of δO18 in atmospheric CO2. I. Surface fluxes. J. Geophys. Res. Atmos. 102, 5857–5872 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Edwards, D., Kerp, H. & Hass, H. Stomata in early land plants: an anatomical and ecophysiological approach. J. Exp. Bot. 49, 255–278 (1998)

    Article  Google Scholar 

  7. Beerling, D. J. & Woodward, F. I. Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record. Bot. J. Linn. Soc. 124, 137–153 (1997)

    Article  Google Scholar 

  8. Woodward, F. I. Do plants really need stomata? J. Exp. Bot. 49, 471–480 (1998)

    Article  Google Scholar 

  9. Janis, C. M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24, 467–500 (1993)

    Article  Google Scholar 

  10. Mast, A. R. & Givnish, T. J. Historical biogeography and the origin of stomatal distributions in Banksia and Dryandra (Proteaceae) based on their cpDNA phylogeny. Am. J. Bot. 89, 1311–1323 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Hill, R. S. (ed.) History of the Australian Vegetation (Cambridge Univ. Press, Cambridge, 1994)

  12. Aronne, G. & De Micco, V. Seasonal dimorphism in the Mediterranean Cistus incanus L. subsp. incanus. Ann. Bot. 87, 789–794 (2001)

    Article  Google Scholar 

  13. Kellogg, E. A. Evolutionary history of the grasses. Plant Physiol. 125, 1198–1205 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Palevitz, B. A. in Stomatal Physiology (eds Jarvis, P. G. & Mansfield, T. A.) 1–23 (Cambridge Univ. Press, Cambridge, 1981)

    Google Scholar 

  15. Raschke, K. in Encyclopedia of Plant Physiology Vol. 7 (eds Haupt, W. & Feinleib, M. E.) 383–441 (Springer, Berlin, 1979)

    Google Scholar 

  16. Grantz, D. A. & Assmann, S. M. Stomatal response to blue-light—water-use efficiency in sugarcane and soybean. Plant Cell Environ. 14, 683–690 (1991)

    Article  Google Scholar 

  17. Wever, L. A., Flanagan, L. B. & Carlson, P. J. Seasonal and interannual variation in evapotranspiration, emergy balance and surface conductance in a northern temperate grassland. Agric. For. Meteorol. 112, 31–49 (2002)

    Article  ADS  Google Scholar 

  18. Retallack, G. J. Cenozoic expansion of grasslands and climatic cooling. J. Geol. 109, 407–426 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Aasamaa, K., Sober, A. & Rahi, M. Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Aust. J. Plant Physiol. 28, 765–774 (2001)

    Google Scholar 

  20. Meidner, H. & Mansfield, T. A. Physiology of Stomata (McGraw-Hill, London, 1968)

    Google Scholar 

  21. Allen, M. T. & Pearcy, R. W. Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. Oecologia 122, 470–478 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Woodward, F. I., Lake, J. A. & Quick, W. P. Stomatal development and CO2: ecological consequences. New Phytol. 153, 477–484 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Royer, D. L. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev. Palaeobot. Palyno. 114, 1–28 (2001)

    Article  Google Scholar 

  24. Gray, J. E. et al. The HIC signalling pathway links CO2 perception to stomatal development. Nature 408, 713–716 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Chen, X., Goodwin, M. S., Boroff, V. L., Liu, X. & Jenks, M. A. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15, 1170–1185 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lake, J. A., Woodward, F. I. & Quick, W. P. Long-distance CO2 signalling in plants. J. Exp. Bot. 53, 183–193 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Metraux, J. P. & Broekaert, W. F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103–2113 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adam, L. et al. Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana successions for resistance to these two powdery mildew pathogens. Mol. Plant Microbe Interact. 12, 1031–1043 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. Lake, J. A., Quick, W. P., Beerling, D. J. & Woodward, F. I. Signals from mature to new leaves. Nature 411, 154–155 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J. & Cameron, R. K. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419, 399–403 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Heichel, G. H. & Anagnostakis, S. L. Stomatal response to light of Solanum pennelli, Lycopersicon esculentum, and a graft-induced chimera. Plant Physiol. 62, 387–390 (1978)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schroeder, J. I., Allen, G. J., Hugouvieux, V., Kwak, J. M. & Waner, D. Guard cell signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 627–658 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. Hetherington, A. M. Guard cell signaling. Cell 107, 711–714 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. McAinsh, M. R. & Hetherington, A. M. Encoding specificity in Ca2+ signalling systems. Trends Plant Sci. 3, 32–36 (1998)

    Article  Google Scholar 

  35. Roelfsema, M. R. G. & Prins, H. B. A. Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana. Physiol. Plant. 95, 373–378 (1995)

    Article  CAS  Google Scholar 

  36. Webb, A. A. R. & Hetherington, A. M. Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells. Plant Physiol. 114, 1557–1560 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leymarie, J., Lasceve, G. & Vavasseur, A. Interaction of stomatal responses to ABA and CO2 on Arabidopsis thaliana. Aust. J. Plant Physiol. 25, 785–791 (1998)

    CAS  Google Scholar 

  38. Leymarie, J., Vavasseur, A. & Lasceve, G. CO2 sensing in stomata of abi1-1 and abi2-1 mutants of Arabidopsis thaliana. Plant Physiol. Biochem. 36, 539–543 (1998)

    Article  CAS  Google Scholar 

  39. Albert, R., Jeong, H. & Barabasi, A.-L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001)

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  41. Barabasi, A.-L. Linked the New Science of Networks 280 (Perseus, Massachusetts, 2002)

    Google Scholar 

  42. Kinoshita, T. et al. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656–660 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Hunt, L. et al. Phospholipase C is required for the control of stomatal aperture by ABA. Plant J. 34, 47–55 (2003)

    Article  CAS  PubMed  Google Scholar 

  44. Webb, A. A. R., Larman, M. G., Montgomery, L. T., Taylor, J. E. & Hetherington, A. M. The role of calcium in ABA-induced gene expression and stomatal movements. Plant J. 26, 351–362 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. Frechilla, F., Talbott, L. D. & Zeiger, E. The CO2 response of Vicia guard cells acclimates to growth environment. J. Exp. Bot. 53, 545–550 (2002)

    Article  CAS  PubMed  Google Scholar 

  46. Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001)

    Article  PubMed  Google Scholar 

  47. Woodward, F. I. & Kelly, C. K. The influence of CO2 concentration on stomatal density. New Phytol. 131, 311–327 (1995)

    Article  Google Scholar 

  48. Leymarie, J., Lasceve, G. & Vavasseur, A. Elevated CO2 enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana. Plant Cell. Environ. 22, 301–308 (1999)

    Article  CAS  Google Scholar 

  49. Webb, A. A. R. in Biological Rhythms and Photoperiodism in Plants (eds Lumsden, P. J. & Millar, A. J.) 69–79 (Bios, Oxford, 1998)

    Google Scholar 

  50. Talbott, L. D. & Zeiger, E. The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49, 329–337 (1998)

    Article  Google Scholar 

  51. Seidman, G. & Riggan, W. B. Stomatal movements: a yearly rhythm. Nature 217, 684–685 (1968)

    Article  ADS  Google Scholar 

  52. Thiel, G., MacRobbie, E. A. C. & Blatt, M. R. Membrane transport in stomatal guard cells—the importance of voltage control. J. Membr. Biol. 126, 1–18 (1992)

    Article  CAS  PubMed  Google Scholar 

  53. Lohse, G. & Hedrich, R. Characterization of the plasma membrane H + ATPase from Vicia faba guard cells modulation by extracellular factors and seasonal changes. Planta 188, 206–214 (1992)

    Article  CAS  PubMed  Google Scholar 

  54. Willmer, C. & Sexton, R. Stomata and plasmodesmata. Protoplasma 100, 113–124 (1979)

    Article  PubMed Central  Google Scholar 

  55. Leckie, C. P., McAinsh, M. R., Allen, G. J., Sanders, D. & Hetherington, A. M. Abscisic acid induced stomatal closure mediated by cyclic ADP ribose. Proc. Natl Acad. Sci. USA 95, 15837–15842 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weyers, J. D. B. & Lawson, T. Heterogeneity in stomatal characteristics. Adv. Bot. Res. 26, 317–352 (1997)

    Article  Google Scholar 

  57. Mott, K. A. & Buckley, T. N. Patchy stomatal conductance: emergent collective behaviour of stomata. Trends Plant Sci. 5, 258–262 (2000)

    Article  CAS  PubMed  Google Scholar 

  58. Farquhar, G. D., Von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980)

    Article  CAS  PubMed  Google Scholar 

  59. Jarvis, A. J., Mansfield, T. A. & Davies, W. J. Stomatal behaviour, photosynthesis and transpiration under rising CO2 . Plant Cell Environ. 22, 639–648 (1999)

    Article  CAS  Google Scholar 

  60. Wullschleger, S. D., Tschaplinski, T. J. & Norby, R. J. Plant water relations at elevated CO2—implications for water-limited environments. Plant Cell Environ. 25, 319–331 (2002)

    Article  PubMed  Google Scholar 

  61. Woodward, F. I. Potential impacts of global elevated CO2 concentrations on plants. Curr. Opin. Plant Biol. 5, 207–211 (2002)

    Article  CAS  PubMed  Google Scholar 

  62. Lu, Z., Percy, R. G., Qualset, C. O. & Zeiger, E. Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown in high temperatures. J. Exp. Bot. 49, 453–460 (1998)

    Article  Google Scholar 

  63. Dudley, S. A. Differing selection on plant physiological traits in response to environmental water availability: a test of adaptive hypotheses. Evolution 50, 92–102 (1996)

    Article  PubMed  Google Scholar 

  64. Case, A. L. & Barrett, S. C. H. Ecological differentiation of combined and separate sexes of Wurmbea dioica (Colchicaceae) in sympatry. Ecology 82, 2601–2616 (2001)

    Article  Google Scholar 

  65. Avery, L. & Wasserman, S. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet. 8, 312–316 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bredenkamp, G. J., Spada, F. & Kazmierczak, E. On the origin of northern and southern hemisphere grasslands. Plant Ecol. 163, 209–229 (2002)

    Article  Google Scholar 

  67. Sugden, A. M. Leaf anatomy in a Venezuelan montane forest. Bot. J. Linn. Soc. 90, 231–241 (1985)

    Article  Google Scholar 

  68. Tanner, E. V. J. & Kapos, V. Leaf structure of Jamaican upper montane rain-forest trees. Biotropica 14, 16–24 (1982)

    Article  Google Scholar 

  69. Knapp, A. K. Gas exchange dynamics on C3 and C4 grasses: consequences of differences in stomatal conductance. Ecology 74, 113–123 (1993)

    Article  Google Scholar 

  70. Li, W. L., Berlyn, G. P. & Ashton, P. M. S. Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceaea). Am. J. Bot. 83, 15–20 (1996)

    Article  Google Scholar 

  71. Blanke, M. M., Höfer, M. & Pring, R. J. Stomata and structure of tetraploid apple leaves cultured in vitro. Ann. Bot. 73, 651–654 (1994)

    Article  Google Scholar 

  72. Mitton, J. B., Grant, M. C. & Yoshino, A. M. Variation in allozymes and stomatal size in pinyon (Pinus edulis, Pinaceae), associated with soil moisture. Am. J. Bot. 85, 1262–1265 (1998)

    Article  CAS  PubMed  Google Scholar 

  73. Jones, H. G. Transpiration in barley lines with differing stomatal frequencies. J. Exp. Bot. 28, 162–168 (1977)

    Article  Google Scholar 

  74. Mishra, M. K. Stomatal characteristics at different ploidy levels in Coffea L. Ann. Bot. 80, 689–692 (1997)

    Article  Google Scholar 

  75. Knapp, A. K., Cocke, M., Hamerlynck, E. P. & Owensby, C. E. Effect of elevated CO2 on stomatal density and distribution in a C4 grass and a C3 forb under field conditions. Ann. Bot. 74, 595–599 (1994)

    Article  Google Scholar 

  76. McConathy, R. K. Tulip-poplar leaf diffusion resistance calculated from stomatal dimensions and varying environmental parameters. For. Sci. 29, 139–148 (1983)

    Google Scholar 

  77. Gindel, I. Stomata constellation in the leaves of cotton, maize and wheat plants as a function of soil moisture and environment. Physiol. Plant. 22, 1143–1151 (1969)

    Article  CAS  PubMed  Google Scholar 

  78. Anderson, L. J., Maherali, H., Johnson, H. B., Polley, H. W. & Jackson, R. B. Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3–C4 grassland. Global Change Biol. 7, 693–707 (2001)

    Article  ADS  Google Scholar 

  79. Cavender-Bares, J. & Bazzaz, F. A. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124, 8–18 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Ellsworth, D. S. CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant Cell Environ. 22, 461–472 (1999)

    Article  Google Scholar 

  81. Escalona, M. H., Bota, J. M., Gulias, J. & Flexas, J. Regulation of photosynthesis of C-3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann. Bot. 89, 895–905 (2002)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Fetene, M., Nauke, P., Lüttge, U. & Beck, E. Photosynthesis and photoinhibition in a tropical alpine giant rosette plant, Lobelia rhynchopetalum. New Phytol. 137, 453–461 (1997)

    Article  CAS  PubMed  Google Scholar 

  83. Franco, A. C. & Lüttge, U. Midday depression in savanna trees: coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131, 356–365 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Garcia, R. L. et al. Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-air atmospheric CO2 enrichment. Plant Cell Environ. 21, 659–669 (1998)

    Article  Google Scholar 

  85. Giorio, P., Sorrentino, G. & d'Andria, R. Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environ. Exp. Bot. 42, 95–104 (1999)

    Article  Google Scholar 

  86. Hamerlynck, E. P., Huxman, T. E., Charlet, T. N. & Smith, S. D. Effects of elevated CO2 (FACE) on the functional ecology of the drought-deciduous Mojave Desert shrub. Lycium andersonii. Environ. Exp. Bot. 48, 93–106 (2002)

    Article  Google Scholar 

  87. Hirasawa, T. & Hsiao, T. C. Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crops Res. 62, 53–62 (1999)

    Article  Google Scholar 

  88. Huxman, T. E. & Smith, S. D. Photosynthesis in an invasive grass and native forb at elevated CO2 during an El Niño year in the Mojave Desert. Oecologia 128, 193–201 (2001)

    Article  ADS  PubMed  Google Scholar 

  89. Jiang, G. M. & Zhu, G. J. Different patterns of gas exchange and photochemical efficiency in three desert shrub species under two natural temperatures and irradiances in Mu Us Sandy Area of China. Photosynthetica 39, 257–262 (2001)

    Article  Google Scholar 

  90. Kaiser, H. & Kappen, L. In situ observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understorey. J. Exp. Bot. 51, 1741–1749 (2000)

    Article  CAS  PubMed  Google Scholar 

  91. Kazda, M., Salzer, J. & Reiter, I. Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain forest. Tree Physiol. 20, 1029–1037 (2000)

    Article  CAS  PubMed  Google Scholar 

  92. Knapp, A. K. Gas exchange dynamics in C3 and C4 grasses: consequences of differences in stomatal conductance. Ecology 74, 113–123 (1993)

    Article  Google Scholar 

  93. Lee, T. D., Tjoelker, M. G., Ellsworth, D. S. & Reich, P. B. Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytol. 150, 405–418 (2001)

    Article  CAS  Google Scholar 

  94. Lodge, R. J., Dijkstra, P., Drake, B. G. & Morison, J. I. L. Stomatal acclimation to increased CO2 concentration in a Florida scrub oak species Quercus myrtifolia Willd. Plant Cell Environ. 24, 77–88 (2001)

    Article  CAS  Google Scholar 

  95. McCarron, J. K. & Knapp, A. K. C3 woody plant expansion in a C4 grassland: are grasses and shrubs functionally distinct? Am. J. Bot. 88, 1818–1823 (2001)

    Article  CAS  PubMed  Google Scholar 

  96. Medlyn, B. E., Loustau, D. & Delzon, S. Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.). Plant Cell Environ. 25, 1155–1165 (2002)

    Article  CAS  Google Scholar 

  97. Pääkkönen, E., Vahala, J., Pohjola, M., Holopainen, T. & Kärenlampi, L. Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. Plant Cell Environ. 21, 671–684 (1998)

    Article  Google Scholar 

  98. Turnbull, M. H. et al. Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability. Oecologia 130, 515–524 (2002)

    Article  ADS  PubMed  Google Scholar 

  99. Yoder, B. J., Ryan, M. G., Waring, R. H., Schoettle, A. W. & Kaufmann, M. R. Evidence of reduced photosynthetic rates in old trees. For. Sci. 40, 513–527 (1994)

    Google Scholar 

  100. Yu, G. R., Zhuang, J. & Yu, Z. L. An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior for maize and soybean plants grown in field. J. Plant Physiol. 158, 861–874 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.M.H. wishes to acknowledge the support of the BBSRC to further stomatal research in his laboratory and the Fellows of St Catherine's College, Oxford, for the award of a Christensen Visiting Fellowship. F.I.W. is pleased to acknowledge support from NERC to further his stomatal research. We also wish to acknowledge G. Farquhar, J. Raven, M. Blatt, A. Webb, B. Davies, C. Price, N. Battey and J. Lake for providing input during the writing of this review, and L. Hunt, J. Gray and L. Mills for the stomatal images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair M. Hetherington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetherington, A., Woodward, F. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003). https://doi.org/10.1038/nature01843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01843

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing