Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Erasable electrostatic lithography for quantum components

Abstract

Quantum electronic components1,2—such as quantum antidots and one-dimensional channels—are usually defined from doped GaAs/AlGaAs heterostructures using electron-beam lithography or local oxidation by conductive atomic force microscopy3,4. In both cases, lithography and measurement are performed in very different environments, so fabrication and test cycles can take several weeks. Here we describe a different lithographic technique, which we call erasable electrostatic lithography (EEL), where patterns of charge are drawn on the device surface with a negatively biased scanning probe in the same low-temperature high-vacuum environment used for measurement. The charge patterns locally deplete electrons from a subsurface two-dimensional electron system (2DES) to define working quantum components. Charge patterns are erased locally with the scanning probe biased positive or globally by illuminating the device with red light. We demonstrate and investigate EEL by drawing and erasing quantum antidots, then develop the technique to draw and tune high-quality one-dimensional channels5,6. The quantum components are imaged using scanned gate microscopy7,8,9,10,11. A technique similar to EEL has been reported previously, where tip-induced charging of the surface or donor layer was used to locally perturb a 2DES before charge accumulation imaging12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of an EEL charge spot defining a quantum antidot in the 2DES.
Figure 2: SGM images of an EEL sequence.
Figure 3: Characterization of an EEL point contact located inside the quantum wire.
Figure 4: Characterization of an EEL point contact located outside the quantum wire.

Similar content being viewed by others

References

  1. Beenakker, C. W. J. & van Houten, H. in Solid State Physics Vol. 44 (eds Ehrenreich, H. & Turnbull, D.) 1–228 (Academic, New York, 1991)

    Google Scholar 

  2. Smith, C. G. Low-dimensional quantum devices. Rep. Prog. Phys. 59, 235–282 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Held, R., Heinzel, T., Studerus, P., Ensslin, K. & Holland, M. Semiconductor quantum point contact fabricated by lithography with an atomic force microscope. Appl. Phys. Lett. 71, 2689–2691 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Curson, N. J. et al. Ballistic transport in a GaAs/AlxGa1-xAs one-dimensional channel fabricated using an atomic force microscope. Appl. Phys. Lett. 78, 3466–3468 (2001)

    Article  ADS  CAS  Google Scholar 

  5. vanWees, B. J. et al. Quantised conductance of point contacts in a two dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988)

    Article  ADS  CAS  Google Scholar 

  6. Wharam, D. A. et al. One-dimensional transport and the quantisation of ballistic resistance. J. Phys. C 21, L209–L214 (1988)

    Article  Google Scholar 

  7. Eriksson, M. A. et al. Cryogenic scanning probe characterization of semiconductor nanostructures. Appl. Phys. Lett. 69, 671–673 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Woodside, M. T. & McEuen, P. L. Scanned probe imaging of single-electron charge states in nanotube quantum dots. Science 296, 1098–1101 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Crook, R. et al. Quantum-dot electron occupancy controlled by a charged scanning probe. Phys. Rev. B 66, 121301 (2002)

    Article  ADS  Google Scholar 

  10. Ihn, T. et al. Scanning gate measurements on a quantum wire. Physica E 12, 691–694 (2002)

    Article  ADS  Google Scholar 

  11. Topinka, M. A. et al. Coherent branched flow in a two-dimensional electron gas. Nature 410, 183–186 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Tessmer, S. H., Glicofridis, P. I., Ashoori, R. C., Levitov, L. S. & Melloch, M. R. Subsurface charge accumulation imaging of a quantum Hall liquid. Nature 392, 51–54 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Tortonese, M., Barret, R. C. & Quate, C. F. Atomic resolution with an atomic force microscope using piezoresistive detection. Appl. Phys. Lett. 62, 834–836 (1993)

    Article  ADS  CAS  Google Scholar 

  14. Crook, R., Smith, C. G., Simmons, M. Y. & Ritchie, D. A. Imaging electrostatic microconstrictions in long 1D wires. Physica E 12, 695–698 (2002)

    Article  ADS  Google Scholar 

  15. Starikov, A. A. et al. Effects of accidental microconstriction on the quantized conductance in long wires. Preprint at 〈arxiv.org/abs/cond-mat/0206013〉 (2002).

  16. Crook, R., Smith, C. G., Simmons, M. Y. & Ritchie, D. A. One-dimensional probability density observed using scanned gate microscopy. J. Phys. Condens. Matter 12, L735–L740 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Williamson, J. G., Timmering, C. E., Harmans, C. J. P. M., Harris, J. J. & Foxon, C. T. Quantum point contact as a local probe of the electrostatic potential contours. Phys. Rev. B 42, R7675–R7678 (1990)

    Article  ADS  Google Scholar 

  18. Yacoby, A. et al. Nonuniversal conductance quantization in quantum wires. Phys. Rev. Lett. 77, 4612–4615 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Thomas, K. J. et al. Interaction effects in a one-dimensional constriction. Phys. Rev. B 58, 4846–4852 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Buttiker, M. Quantized transmission of a saddle-point constriction. Phys. Rev. B 41, 7906–7909 (1990)

    Article  ADS  CAS  Google Scholar 

  21. Field, M. et al. Measurements of Coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett. 70, 1311–1314 (1993)

    Article  ADS  CAS  Google Scholar 

  22. Johnson, K. L. Contact Mechanics (Cambridge Univ. Press, Cambridge, UK, 1987)

    Google Scholar 

  23. Eriksson, M. A. et al. Effect of a charged scanned probe microscope tip on a subsurface electron gas. Superlattices Microstruct. 20, 435–440 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Micolich, A. P. et al. Evolution of fractal patterns during a classical-quantum transition. Phys. Rev. Lett. 87, 036802 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. J. Thomas, C. J. B. Ford and M. Kataoka for discussions. A.C.G. fabricated the sample and made the antidot measurements. C.G.S. coordinated the scanning-probe measurement facilities. I.F. and H.E.B. grew the wafer using molecular beam epitaxy (MBE). D.A.R. coordinated the MBE facilities. This work was supported by the EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles G. Smith.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crook, R., Graham, A., Smith, C. et al. Erasable electrostatic lithography for quantum components. Nature 424, 751–754 (2003). https://doi.org/10.1038/nature01841

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01841

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing