Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prediction of auditory spatial acuity from neural images on the owl's auditory space map

Abstract

The owl can discriminate changes in the location of sound sources as small as 3° and can aim its head to within 2° of a source1,2. A typical neuron in its midbrain space map has a spatial receptive field that spans 40°—a width that is many times the behavioural threshold3. Here we have quantitatively examined the relationship between neuronal activity and perceptual acuity in the auditory space map in the barn owl midbrain. By analysing changes in firing rate resulting from small changes of stimulus azimuth, we show that most neurons can reliably signal changes in source location that are smaller than the behavioural threshold. Each source is represented in the space map by a focus of activity in a population of neurons. Displacement of the source causes the pattern of activity in this population to change. We show that this change predicts the owl's ability to detect a change in source location.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioural discrimination of azimuthal source separation.
Figure 2: Neuronal discrimination.
Figure 3: Average neuronal discrimination approximates behavioural performance.
Figure 4: Neuronal computation of spatial discrimination.

Similar content being viewed by others

References

  1. Knudsen, E. I., Blasdel, G. G. & Konishi, M. Mechanisms of sound localization in the barn owl (Tyto alba). J. Comp. Physiol. A 133, 13–21 (1979)

    Article  Google Scholar 

  2. Bala, A. D. & Takahashi, T. T. Pupillary dilation response as an indicator of auditory discrimination in the barn owl. J. Comp. Physiol. A 186, 425–434 (2000)

    Article  CAS  Google Scholar 

  3. Knudsen, E. I., Konishi, M. & Pettigrew, J. D. Receptive fields of auditory neurons in the owl. Science 198, 1278–1280 (1977)

    Article  ADS  CAS  Google Scholar 

  4. Sakitt, B. Indices of discriminability. Nature 241, 133–134 (1973)

    Article  ADS  CAS  Google Scholar 

  5. Sokolov, E. N. Higher nervous functions: the orienting reflex. Annu. Rev. Physiol. 25, 545–580 (1963)

    Article  CAS  Google Scholar 

  6. Keller, C. H., Hartung, K. & Takahashi, T. T. Head-related transfer functions of the barn owl: measurement and neural responses. Hear. Res. 118, 13–34 (1998)

    Article  CAS  Google Scholar 

  7. Hall, J. L. Binaural interaction in the accessory superior-olivary nucleus of the cat. J. Acoust. Soc. Am. 37, 813–823 (1965)

    Article  ADS  Google Scholar 

  8. Baldi, P. & Heiligenberg, W. How sensory maps could enhance resolution through ordered arrangements of broadly tuned receivers. Biol. Cybern. 59, 313–318 (1988)

    Article  MathSciNet  CAS  Google Scholar 

  9. Eurich, C. & Swegler, H. Coarse coding: calculation of the resolution achieved by a population of large receptive field neurons. Biol. Cybern. 76, 357–363 (1997)

    Article  CAS  Google Scholar 

  10. Fitzpatrick, D. C., Batra, R., Stanford, T. R., Kuwada, S. A neuronal population code for sound localization. Nature 388, 871–874 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Barlow, H. B. Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1, 371–394 (1972)

    Article  CAS  Google Scholar 

  12. Shackleton, T. M., Skottun, B. C., Arnott, R. H. & Palmer, A. R. Interaural time difference discrimination thresholds for single neurons in the inferior colliculus of guinea pigs. J. Neurosci. 23, 716–724 (2003)

    Article  CAS  Google Scholar 

  13. Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986)

    Article  ADS  CAS  Google Scholar 

  14. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989)

    Article  ADS  CAS  Google Scholar 

  15. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992)

    Article  CAS  Google Scholar 

  16. Shadlen, M. N., Britten, K. H., Newsome, W. T. & Movshon, J. A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996)

    Article  CAS  Google Scholar 

  17. Recanzone, G. H., Guard, D. C., Phan, M. L. & Su, T. I. Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. J. Neurophysiol. 83, 2723–2739 (2000)

    Article  CAS  Google Scholar 

  18. Rolls, E. T., Sienkiewicz, Z. J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1, 53–60 (1989)

    Article  Google Scholar 

  19. Farel, P. B. & Thompson, R. F. Habituation of a monosynaptic response in frog spinal cord: evidence for a presynaptic mechanism. J. Neurophysiol. 39, 661–666 (1976)

    Article  CAS  Google Scholar 

  20. Kandel, E. R., Brunelli, M., Byrne, J. & Castellucci, V. A common presynaptic locus for the synaptic changes underlying short-term habituation and sensitization of the gill-withdrawal reflex in aplysia. Cold Spring Harb. Symp. Quant. Biol. 40, 465–482 (1976)

    Article  CAS  Google Scholar 

  21. Britten, K. H. & Heuer, H. W. Spatial summation in the receptive fields of MT neurons. J. Neurosci. 19, 5074–5084 (1999)

    Article  CAS  Google Scholar 

  22. Rolls, E. T. & Treves, A. Neural Networks and Brain Function (Oxford Univ. Press, Oxford, 1998)

    Google Scholar 

  23. O'Reilly, R. C. & Norman, K. A. Hippocampal and neocortical contributions to memory: advances in the complementary learning systems framework. Trends Cogn. Sci. 6, 505–510 (2002)

    Article  Google Scholar 

  24. Siebert, W. M. in Recognizing Patterns (eds Kolers, P. A. & Eden, M.) 104–133 (MIT Press, Cambridge, MA, 1968)

    Google Scholar 

  25. Colburn, H. S. Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. J. Acoust. Soc. Am. 54, 1458–1470 (1973)

    Article  ADS  CAS  Google Scholar 

  26. Ahissar, M., Ahissar, E., Bergman, H. & Vaadia, E. Encoding of sound-source location and movement: activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. J. Neurophysiol. 67, 203–215 (1992)

    Article  CAS  Google Scholar 

  27. Fujita, I. & Konishi, M. The role of GABAergic inhibition in processing of interaural time difference in the owl's auditory system. J. Neurosci. 11, 722–739 (1991)

    Article  CAS  Google Scholar 

  28. Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994)

    Article  ADS  CAS  Google Scholar 

  29. Bell, C. C. Memory-based expectations in electrosensory systems. Curr. Opin. Neurobiol. 11, 481–487 (2001)

    Article  CAS  Google Scholar 

  30. Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Keller for technical assistance, and J. Bala, S. Colburn, P. Dassonville and R. Marrocco for comments on the manuscript. This work was supported by grants from the National Institute on Deafness and Other Communication Disorders and the McKnight Foundation to T.T.T., and from the NIH to M.W.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash D. S. Bala.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bala, A., Spitzer, M. & Takahashi, T. Prediction of auditory spatial acuity from neural images on the owl's auditory space map. Nature 424, 771–774 (2003). https://doi.org/10.1038/nature01835

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01835

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing