Rotational actuators based on carbon nanotubes

Abstract

Nanostructures are of great interest not only for their basic scientific richness, but also because they have the potential to revolutionize critical technologies. The miniaturization of electronic devices over the past century has profoundly affected human communication, computation, manufacturing and transportation systems. True molecular-scale electronic devices are now emerging that set the stage for future integrated nanoelectronics1. Recently, there have been dramatic parallel advances in the miniaturization of mechanical and electromechanical devices2. Commercial microelectromechanical systems now reach the submillimetre to micrometre size scale, and there is intense interest in the creation of next-generation synthetic nanometre-scale electromechanical systems3,4. We report on the construction and successful operation of a fully synthetic nanoscale electromechanical actuator incorporating a rotatable metal plate, with a multi-walled carbon nanotube serving as the key motion-enabling element.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Integrated synthetic NEMS actuator.
Figure 2: Series of SEM images showing the actuator rotor plate at different angular displacements.
Figure 3: Two SEM images captured from a video recording of an a.c.-voltage-driven actuator ‘flipping’ between the extremal horizontal positions (90° and 270°).

References

  1. 1

    Tour, J. M. et al. Recent advances in molecular scale electronics. Ann. NY Acad. Sci. 852, 197–204 (1998)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Judy, J. W. Microelectromechanical system (MEMS): Fabrication, design and applications. Smart Mater. Struct. 10, 1115–1134 (2001)

    ADS  Article  Google Scholar 

  3. 3

    Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Roukes, M. L. in Tech. Digest of the 2000 Solid-State Sensor and Actuator Workshop (eds Bousse, L. & Schmidt, M.) 367–376 (Transducer Research Foundation, Cleveland, 2000)

    Google Scholar 

  5. 5

    Carr, D. W., Evoy, S., Sekaric, L., Craighead, H. G. & Parpia, J. M. Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl. Phys. Lett. 75, 920–922 (1999)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Lifshitz, R. & Roukes, M. L. Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Chopra, N. G. et al. Boron nitride nanotubes. Science 269, 966–967 (1995)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Charlier, J.-C. & Michenaud, J.-P. Energetics of multilayered carbon tubules. Phys. Rev. Lett. 70, 1858–1861 (1993)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Kolmogorov, A. N. & Crespi, V. H. Smoothest bearings: Interlayer sliding in multiwalled carbon nanotubes. Phys. Rev. Lett. 85, 4727–4730 (2000)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Ebbesen, T. W. & Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Bockrath, M. et al. Single electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997)

    CAS  Article  Google Scholar 

  14. 14

    Yakobson, B. I., Brabec, C. J. & Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Williams, P. A. et al. Torsional response and stiffening of individual multiwalled carbon nanotubes. Phys. Rev. Lett. 89, 255202 (2002)

    Article  Google Scholar 

  16. 16

    Williams, P. A. et al. Fabrication of nanometer-scale mechanical devices incorporating multiwalled carbon nanotubes as torsional springs. Appl. Phys. Lett. 82, 805–807 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Cumings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multi-walled carbon nanotubes. Science 289, 602–604 (2000)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Yu, M.-F., Yakobson, B. I. & Ruoff, R. S. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. J. Phys. Chem. B 104, 8764–8767 (2000)

    CAS  Article  Google Scholar 

  19. 19

    Cumings, J., Collins, P. G. & Zettl, A. Peeling and sharpening of multiwall nanotubes. Nature 406, 586 (2000)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Collins, P. G., Arnold, M. S. & Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Poncharal, P., Wang, Z. L., Ugarte, D. & de Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank N. Bodzin for assistance with graphics. This research was supported in part by the National Science Foundation, and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Zettl.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fennimore, A., Yuzvinsky, T., Han, W. et al. Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003). https://doi.org/10.1038/nature01823

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.