Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor

Abstract

More than 50% of the Earth' s surface is sea floor below 3,000 m of water. Most of this major reservoir in the global carbon cycle and final repository for anthropogenic wastes is characterized by severe food limitation. Phytodetritus is the major food source for abyssal benthic communities, and a large fraction of the annual food load can arrive in pulses within a few days1,2. Owing to logistical constraints, the available data concerning the fate of such a pulse are scattered3,4 and often contradictory5,6,7,8,9,10, hampering global carbon modelling and anthropogenic impact assessments. We quantified (over a period of 2.5 to 23 days) the response of an abyssal benthic community to a phytodetritus pulse, on the basis of 11 in situ experiments. Here we report that, in contrast to previous hypotheses5,6,7,8,9,10,11, the sediment community oxygen consumption doubled immediately, and that macrofauna were very important for initial carbon degradation. The retarded response of bacteria and Foraminifera, the restriction of microbial carbon degradation to the sediment surface, and the low total carbon turnover distinguish abyssal from continental-slope ‘deep-sea’ sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response of different benthic compartments to POM enrichment.
Figure 2: Pathways of 13C labelled phytodetritus through the benthic community with time.
Figure 3: Vertical distribution of several quantities within the sediment.

Similar content being viewed by others

References

  1. Billett, D. S. M., Lampitt, R. S., Rice, A. L. & Mantoura, R. F. C. Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302, 520–522 (1983)

    Article  ADS  CAS  Google Scholar 

  2. Lampitt, R. S. Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res. I 32, 885–897 (1985)

    Article  ADS  Google Scholar 

  3. Lochte, K. & Turley, C. M. Bacteria and cyanobacteria associated with phytodetritus in the deep-sea. Nature 333, 67–69 (1988)

    Article  ADS  Google Scholar 

  4. Tyler, P. A. Seasonality in the deep sea. Oceanogr. Mar. Biol. Annu. Rev. 26, 227–258 (1988)

    Google Scholar 

  5. Smith, K. L. Jr & Baldwin, R. J. Seasonal fluctuations in deep-sea sediment community oxygen consumption: Central and eastern north Pacific. Nature 307, 624–626 (1984)

    Article  ADS  CAS  Google Scholar 

  6. Graf, G. Benthic–pelagic coupling in a deep-sea benthic community. Nature 341, 437–439 (1989)

    Article  ADS  Google Scholar 

  7. Drazen, J. C., Baldwin, R. J. & Smith, K. L. Jr Sediment community response to a temporally varying food supply at an abyssal station in the NE Pacific. Deep-Sea Res. II 45, 893–913 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Sayles, F. L., Martin, W. R. & Deuser, W. G. Response of benthic oxygen demand to particulate organic carbon supply in the deep sea near Bermuda. Nature 371, 686–689 (1994)

    Article  ADS  CAS  Google Scholar 

  9. Smith, K. L. & Kaufmann, R. S. Long-term discrepancy between food supply and demand in the eastern North Pacific. Science 284, 1174–1177 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Witbaard, R., Duineveld, G. C. A., Van der Weele, J. A., Berghuis, E. M. & Reyss, J. P. The benthic response to the seasonal deposition of phytopigments at the Porcupine Abyssal Plain in the North East Atlantic. J. Sea Res. 43, 15–31 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Moodley, L. et al. Bacteria and Foraminifera: Key players in a short-term deep-sea benthic response to phytodetritus. Mar. Ecol. Prog. Ser. 236, 23–29 (2002)

    Article  ADS  Google Scholar 

  12. Billett, D. S. M. & Rice, A. L. The BENGAL programme: Introduction and overview. Prog. Oceanogr. 50, 13–25 (2001)

    Article  ADS  Google Scholar 

  13. Lampitt, R. S. et al. Material supply to the abyssal seafloor in the Northeast Atlantic. Prog. Oceanogr. 50, 27–63 (2001)

    Article  ADS  Google Scholar 

  14. Rowe, G. T. et al. ‘Total’ sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos. Mar. Ecol. Prog. Ser. 79, 99–114 (1991)

    Article  ADS  Google Scholar 

  15. Turley, C. Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic. FEMS Microbiol. Ecol. 33, 89–99 (2000)

    CAS  PubMed  Google Scholar 

  16. Boetius, A. & Lochte, K. Effect of organic enrichments on hydrolytic potentials and growth of bacteria in deep-sea sediments. Mar. Ecol. Prog. Ser. 140, 239–250 (1996)

    Article  ADS  Google Scholar 

  17. Aberle, N. & Witte, U. Deep-sea macrofauna exposed to a simulated sedimentation event in the abyssal NE Atlantic: In situ pulse-chase experiments using 13C-labelled phytodetritus. Mar. Ecol. Prog. Ser. 251, 37–47 (2003)

    Article  ADS  Google Scholar 

  18. Pfannkuche, O. Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47°N, 20°W. Deep-Sea Res. 40, 135–149 (1993)

    Article  ADS  Google Scholar 

  19. Smith, K. L. Jr, Baldwin, R. J., Karl, D. M. & Boetius, A. Benthic community responses to pulses in pelagic food supply: North Pacific Subtropical Gyre. Deep-Sea Res. 49, 971–990 (2002)

    Article  CAS  Google Scholar 

  20. Billett, D. S. M. et al. Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic). Prog. Oceanogr. 50, 325–348 (2001)

    Article  ADS  Google Scholar 

  21. Bett, B. J., Malzone, M. G., Narayanaswamy, B. E. & Wigham, B. D. Temporal variability in phytodetritus and megabenthic activity at the seabed in the deep Northeast Atlantic. Prog. Oceanogr. 50, 349–368 (2001)

    Article  ADS  Google Scholar 

  22. Levin, L. A. et al. Rapid subduction of organic matter by maldanid polychaetes on the North Carolina slope. J. Mar. Res. 55, 595–611 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Witte, U., Aberle, N., Sand, M. & Wenzhöfer, F. Rapid response of a deep-sea benthic community to POM enrichment: An in situ experimental study. Mar. Ecol. Prog. Ser. 251, 27–36 (2003)

    Article  ADS  Google Scholar 

  24. Gooday, A. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: A review. J. Oceanogr. 58, 305–332 (2002)

    Article  CAS  Google Scholar 

  25. Wenzhöfer, F., Holby, O. & Kohls, O. Deep penetrating benthic oxygen profiles measured in situ by oxygen optodes. Deep-Sea Res. I 48, 1741–1755 (2001)

    Article  Google Scholar 

  26. Witte, U. & Pfannkuche, O. High rates of benthic carbon remineralisation in the abyssal Arabian Sea. Deep-Sea Res. II 47, 2785–2804 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Boetius, A., Ferdelmann, T. & Lochte, K. Bacterial activity in sediments of the deep Arabian Sea in relation to vertical flux. Deep-Sea Res. II 47, 2835–2875 (2000)

    Article  ADS  Google Scholar 

  28. Boschker, H. T. S., de Brouwer, J. F. C. & Cappenberg, T. E. The contribution of macrophyte derived organic matter to microbial biomass in salt-marsh sediments: Stable isotope analysis of microbial biomarkers. Limnol. Oceanogr. 44, 309–319 (1999)

    Article  ADS  Google Scholar 

  29. Middelburg, J. J. et al. The fate of intertidal microphytobenthos carbon: An in situ13C-labelling study. Limnol. Oceanogr. 45, 1224–1234 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the officers, crew and shipboard scientific party of RV Poseidon for their support at sea during the expedition POS 260/1-5, and M. Poser, W. Queisser, S. Meyer and V. Meyer for technical assistance with the lander systems. We also thank F. Lipschultz and U. Struck for help with isotope ratio measurements of macrofauna and Foraminifera, and K. Smith for review. This work was funded by the Bundesministerium für Bildung und Forschung as part of the BIGSET programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Witte.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witte, U., Wenzhöfer, F., Sommer, S. et al. In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424, 763–766 (2003). https://doi.org/10.1038/nature01799

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01799

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing