Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The hydrodynamics of water strider locomotion


Water striders Gerridae are insects of characteristic length 1 cm and weight 10 dynes that reside on the surface of ponds, rivers, and the open ocean1,2,3,4. Their weight is supported by the surface tension force generated by curvature of the free surface5,6, and they propel themselves by driving their central pair of hydrophobic legs in a sculling motion7,8. Previous investigators have assumed that the hydrodynamic propulsion of the water strider relies on momentum transfer by surface waves1,9,10. This assumption leads to Denny's paradox11: infant water striders, whose legs are too slow to generate waves, should be incapable of propelling themselves along the surface. We here resolve this paradox through reporting the results of high-speed video and particle-tracking studies. Experiments reveal that the strider transfers momentum to the underlying fluid not primarily through capillary waves, but rather through hemispherical vortices shed by its driving legs. This insight guided us in constructing a self-contained mechanical water strider whose means of propulsion is analogous to that of its natural counterpart.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural and mechanical water striders.
Figure 2: The relation between maximum curvature force Fs = σP and body weight Fg = Mg for 342 species of water striders.
Figure 3: The flow generated by the driving stroke of the water strider.
Figure 4: Dipolar vortices in the wake of the adult water strider.

Similar content being viewed by others


  1. Andersen, N. M. A comparative study of locomotion on the water surface in semiaquatic bugs (Insecta, Hemiptera, Gerromorpha). Vidensk. Meddr. Dansk. Naturh. Foren. 139, 337–396 (1976)

    Google Scholar 

  2. Brinkhurst, R. O. Studies on the functional morphology of Gerris najas degeer (Hem. Het. Gerridae). Proc. Zool. Soc. Lond. 133, 531–559 (1960)

    Article  Google Scholar 

  3. Murphey, R. K. A: Motor control of orientation to prey by the water strider Gerris remigis. Z. Vergl. Physiol. 72, 150–167 (1971)

    Article  Google Scholar 

  4. Wilcox, R. S. Sex discrimination in Gerris remigis: Role of a surface wave signal. Science 206, 1325–1327 (1979)

    Article  ADS  CAS  Google Scholar 

  5. Baudoin, R. La physico-chimie des surfaces dans la vie des arthropodes aeriens des miroirs d'eau, des rivages marins et lacustres et de la zone intercotidale. Bull. Biol. Fr. Belg. 89, 16–164 (1955)

    Google Scholar 

  6. Keller, J. B. Surface tension force on a partly submerged body. Phys. Fluids 10, 3009–3010 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Darnhofer-Demar, B. Zur Fortbewegung des Wasserlaufers Gerris lacustris L. auf des Wasseroberflache. Zool. Anz. Suppl. 32, 430–439 (1969)

    Google Scholar 

  8. Bowdan, E. Walking and rowing in the water strider, Gerris remigis. J. Comp. Physiol. 123, 43–49 (1978)

    Article  Google Scholar 

  9. Denny, M. W. Air and Water: The Biology and Physics of Life's Media (Princeton Univ. Press, Princeton, NJ, 1993)

    Google Scholar 

  10. Sun, S. M. & Keller, J. B. Capillary-gravity wave drag. Phys. Fluids 13, 2146–2151 (2001)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Suter, R. B., Rosenberg, O., Loeb, S., Wildman, H. & Long, J. H. Locomotion on the water surface: propulsive mechanisms of the fisher spider Dolomedes triton. J. Exp. Biol. 200, 2523–2538 (1997)

    CAS  PubMed  Google Scholar 

  12. Childress, S. Mechanics of Swimming and Flying (Cambridge Univ. Press, Cambridge, UK, 1981)

    Book  Google Scholar 

  13. Vogel, S. Life's Devices (Princeton Univ. Press, Princeton, NJ, 1988)

    Google Scholar 

  14. Dickinson, M. H. et al. How animals move: an integrated view. Science 288, 100–106 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Rayner, J. M. V., Jones, G. & Thomas, A. Vortex flow visualizations reveal change in upstroke function with flight speed in bats. Nature 321, 162–164 (1986)

    Article  ADS  Google Scholar 

  16. Ellington, C. P. Oxygen consumption of bumblebees in forward flight. Nature 347, 472–473 (1990)

    Article  ADS  Google Scholar 

  17. Vogel, S. Life in Moving Fluids (Princeton Univ. Press, Princeton, NJ, 1994)

    Google Scholar 

  18. Glasheen, J. W. & McMahon, T. A. A hydrodynamic model of locomotion in the Basilisk Lizard. Nature 380, 340–342 (1996)

    Article  ADS  CAS  Google Scholar 

  19. de Gennes, P.-G., Brochard-Wyart, F. & Quere, D. Gouttes, Boules, Perles et Ondes (Belin, Collection Echelles, Paris, 2002)

    Google Scholar 

  20. Tseng, M. & Rowe, L. Sexual dimorphism and allometry in the giant water strider Gigantometra gigas. Can. J. Zool. 77, 923–929 (1999)

    Article  Google Scholar 

  21. Lamb, H. Hydrodynamics, 6th edn (Cambridge Univ. Press, Cambridge, 1932)

    MATH  Google Scholar 

  22. Schooley, A. H. Profiles of wind-created water waves in the capillary-gravity transition region. J. Mar. Res. 16, 100–108 (1958)

    Google Scholar 

  23. Suter, R. B. & Wildman, H. Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change. J. Exp. Biol. 202, 2771–2785 (1999)

    PubMed  Google Scholar 

  24. Matsuda, K., Watanabe, S. & Eiju, T. Real-time measurement of large liquid surface deformation using a holographic shearing interferometer. Appl. Opt. 24, 4443–4447 (1985)

    Article  ADS  CAS  Google Scholar 

  25. Starr, V. P. Momentum and energy integrals for gravity waves of finite height. J. Mar. Res. 6, 175–193 (1947)

    MathSciNet  Google Scholar 

  26. Andersen, N. M. The Semiaquatic Bugs (Hemiptera, Gerromorpha): Phylogeny, Adaptations, Biogeography and Classification (Scandinavian Science, Klampenborg, 1982)

    Google Scholar 

  27. Hungerford, H. B. & Matsuda, R. Keys to subfamilies, tribes, genera and subgenera of the Gerridae of the world. Kans. Univ. Sci. Bull. 41 (1960)

  28. Henry, T. J. & Froeschner, R. C. (eds) Catalog of the Heteroptera, of True Bugs, of Canada and the Continental United States (E. J. Brill, Leiden, 1998)

  29. Cobben, R. H. The Hemiptera of the Netherlands. Stud. Fauna Curacao Caribb. Islands 11, 1–34 (1960)

    Google Scholar 

  30. Scriven, L. E. & Sternling, C. V. The Marangoni effects. Nature 187, 186–188 (1970)

    Article  ADS  Google Scholar 

Download references


We thank A. Chau for preparing Fig. 2, M. Hancock, M. Shelley and R. Rosales for discussions, and MIT's Edgerton Center for lending us their high-speed video equipment. J.W.M.B. gratefully acknowledges the financial support of the NSF.

Author information

Authors and Affiliations


Corresponding author

Correspondence to John W. M. Bush.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, D., Chan, B. & Bush, J. The hydrodynamics of water strider locomotion. Nature 424, 663–666 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing