Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Type II supernovae as a significant source of interstellar dust

Abstract

Large amounts of dust (>108M) have recently been discovered in high-redshift quasars1,2 and galaxies3,4,5 corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung–Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale6 (<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.2–4M of dust7,8,9,10. As massive stars evolve rapidly, on timescales of a few Myr, these supernovae could be responsible for the high-redshift dust. Observations11,12,13 of supernova remnants in the Milky Way, however, have hitherto revealed only 10-7–10-3M each, which is insufficient to explain the high-redshift data. Here we report the detection of 2–4M of cold dust in the youngest known Galactic supernova remnant, Cassiopeia A. This observation implies that supernovae are at least as important as stellar winds in producing dust in our Galaxy and would have been the dominant source of dust at high redshifts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: SCUBA 850-µm image of Cas A at a resolution of 15 arcsec.
Figure 2: The SED of Cas A from the mid-infrared to the radio.
Figure 3: SCUBA 450-µm map, smoothed with a 21″ gaussian.
Figure 4: The 850 µm emission once the synchrotron has been subtracted using an 83-GHz image19.

References

  1. 1

    Bertoldi, F. et al. Dust emission from the most distant quasars. Astron. Astrophys. Lett. (in the press); also available at http://www.arXiv.org/astro-ph/0305116 (2003).

  2. 2

    Archibald, E. N. et al. A submillimetre survey of the star formation history of radio galaxies. Mon. Not. R. Astron. Soc. 323, 417–444 (2001)

    ADS  Article  Google Scholar 

  3. 3

    Hughes, D. H. et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey. Nature 394, 241–247 (1998)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Smail, I., Ivison, R. J. & Blain, A. W. A deep sub-millimetre survey of lensing clusters: A new window on galaxy formation and evolution. Astrophys. J. 490, L5–L8 (1997)

    ADS  Article  Google Scholar 

  5. 5

    Dunne, L., Eales, S. A. & Edmunds, M. G. A census of metals at high and low redshifts and the connection between submillimetre sources and spheroid formation. Mon. Not. R. Astron. Soc. 341, 589–598 (2003)

    ADS  Article  Google Scholar 

  6. 6

    Morgan, H. L. & Edmunds M. G. Dust formation in early galaxies. Mon. Not. R. Astron. Soc. (in the press); also available at http://www.arXiv.org/astro-ph/0302566 (2003).

  7. 7

    Todini, P. & Ferrara, A. Dust formation in primordial Type II supernovae. Mon. Not. R. Astron. Soc. 325, 726–736 (2001)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Clayton, D. D., Liu, W. & Dalgarno, A. Condensation of carbon in radioactive supernova gas. Science 283, 1290–1292 (1999)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kozasa, T., Hasegawa, H. & Nomoto, K. Formation of dust grains in the ejecta of SN 1987A. II. Astron. Astrophys. 249, 474–482 (1991)

    ADS  CAS  Google Scholar 

  10. 10

    Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 101–181 (1995)

    ADS  Article  Google Scholar 

  11. 11

    Lagage, P. O. et al. Dust formation in the Cassiopeia A supernova. Astron. Astrophys. 315, L273–L276 (1996)

    ADS  Google Scholar 

  12. 12

    Douvion, T., Lagage, P. O., Cesaesky, C. J. & Dwek, E. Dust in the Tycho, Kepler and Crab supernova remnants. Astron. Astrophys. 373, 281–291 (2001)

    ADS  Article  Google Scholar 

  13. 13

    Dwek, E., Dinerstein, H. L., Gillet, F. C., Hauser, M. G. & Rice, W. L. Physical processes and infrared emission from the Cassiopeia A supernova remnant. Astrophys. J. 315, 571–579 (1987)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Lucy, L. B., Danziger, I. J., Gouiffes, C. & Bouchet, P. in Supernovae: The 10th Santa Cruz Workshop in Astronomy and Astrophysics (ed. Woosley, S. E.) 82 (Springer, New York, 1991)

    Book  Google Scholar 

  15. 15

    Reed, J. E., Hester, J. J., Fabian, A. C. & Winkler, P. F. The three-dimensional structure of the Cassiopeia A supernova remnant. I. The spherical shell. Astrophys. J. 440, 706–721 (1995)

    ADS  Article  Google Scholar 

  16. 16

    García-Segura, G., Langer, N. & MacLow, M.-M. The hydrodynamic evolution of circumstellar gas around massive stars. Astron. Astrophys. 316, 133–146 (1997)

    ADS  Google Scholar 

  17. 17

    Holland, W. S. et al. SCUBA: a common-user submillimetre camera operating on the James Clerk Maxwell Telescope. Mon. Not. R. Astron. Soc. 303, 659–672 (1999)

    ADS  Article  Google Scholar 

  18. 18

    Gotthelf, E. V. et al. CHANDRA detection of the forward and reverse shocks in Cassiopeia A. Astrophys. J. 552, L39–L43 (2001)

    ADS  Article  Google Scholar 

  19. 19

    Wright, M., Dickel, J., Koralesky, B. & Rudnick, L. The supernova remnant Cassiopeia A at millimeter wavelengths. Astrophys. J. 518, 284–297 (1999)

    ADS  Article  Google Scholar 

  20. 20

    Li, A. & Draine, B. T. Infrared emission from interstellar dust. II. The diffuse interstellar medium. Astrophys. J. 554, 778–802 (2001)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Agüeros, M. A. & Green, D. A. The bulk expansion of the supernova remnant Cassiopeia A at 151 MHz. Mon. Not. R. Astron. Soc. 305, 957–965 (1999)

    ADS  Article  Google Scholar 

  22. 22

    Borkowski, K. J., Szmkowiak, A. E., Blondin, J. M. & Sarazin, C. L. A circumstellar shell model for the Cassiopeia A supernova remnant. Astrophys. J. 466, 866–870 (1996)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Reichart, D. E. & Stephens, A. W. The fading of supernova remnant Cassiopeia A from 38 MHz to 16.5 GHz from 1949 to 1999 with new observations at 1405 MHz. Astrophys. J. 537, 904–908 (2000)

    ADS  Article  Google Scholar 

  24. 24

    Baars, J. W. M., Genzel, R., Pauliny-Toth, I. I. K. & Witzel, A. The absolute spectrum of CAS A—an accurate flux density scale and a set of secondary calibrators. Astron. Astrophys. 61, 99–106 (1977)

    ADS  Google Scholar 

  25. 25

    O'Sullivan, C. & Green, D. A. Constraints on the secular decrease in the flux density of CAS A at 13.5, 15.5 and 16.5 GHz. Mon. Not. R. Astron. Soc. 303, 575–578 (1999)

    ADS  Article  Google Scholar 

  26. 26

    Mason, B. S. et al. An absolute flux density measurement of the supernova remnant Cassiopeia A at 32 GHz. Astron. J. 118, 2908–2918 (1999)

    ADS  Article  Google Scholar 

  27. 27

    Liszt, H. & Lucas, R. 86 and 140 GHz radiocontinuum maps of the Cassiopeia A SNR. Astron. Astrophys. 347, 258–265 (1999)

    ADS  CAS  Google Scholar 

  28. 28

    Mezger, P. G., Tuffs, R. J., Chini, R., Kreysa, E. & Gemuend, H.-P. Maps of Cassiopeia A and the Crab Nebula at lambda 1.2 mm. Astron. Astrophys. 167, 145–150 (1986)

    ADS  CAS  Google Scholar 

  29. 29

    Saken, J. M., Fesen, R. A. & Shull, J. M. An IRAS survey of Galactic supernova remnants. Astrophys. J. Suppl. Ser. 81, 715–745 (1992)

    ADS  Article  Google Scholar 

  30. 30

    Tuffs, R. J., et al. in The Universe as Seen by ISO (eds Cox, P. & Kessler, M. F.) 241–254 (ESA-SP 427, ESA Publications Division, ESTEC, Noordwijk, 1999)

    Google Scholar 

Download references

Acknowledgements

We thank M. Wright for providing us with the 83-GHz image, and W. Gear and D. Green for discussions. L.D. is supported by a PPARC postdoctoral fellowship and H.M. by a Cardiff University studentship. We are grateful to G. Davis for the use of Director's time on the JCMT to obtain the new photometry data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Loretta Dunne.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dunne, L., Eales, S., Ivison, R. et al. Type II supernovae as a significant source of interstellar dust. Nature 424, 285–287 (2003). https://doi.org/10.1038/nature01792

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing