Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measuring dipolar width across liquid–liquid interfaces with ‘molecular rulers’

Abstract

Molecular dynamics simulations have previously described how the physical properties across immiscible liquid–liquid interfaces should converge from aqueous to organic limits1,2,3,4,5, but these predictions have largely gone untested, owing to difficulties associated with probing buried interfaces. X-ray and neutron scattering experiments have created detailed pictures of molecular structure at these boundaries6,7,8, but such scattering studies cannot probe how surface-altered solvent structures affect interfacial solvating properties. Given that surface-mediated solvent properties control interfacial solute concentrations and reactivities, identifying the characteristic dimensions of interfacial solvation is essential for formulating predictive models of solution phase surface chemistry. Here we use specially synthesized solvatochromic surfactants that act as ‘molecular rulers’9 and resonance-enhanced second-harmonic generation10,11,12,13 to measure the dipolar width of weakly and strongly associating liquid–liquid interfaces. Dipolar width describes the distance required for a dielectric environment to change from one phase to another. Our results show that polarity converges to a nonpolar limit on subnanometre length scales across a water–cyclohexane interface. However, polarity across the strongly associating, water–1-octanol interface is dominated by a nonpolar, alkane-like region. These data call into question the use of continuum descriptions of liquids to characterize interfacial solvation, and demonstrate that interfacial environments can vary in a non-additive manner from bulk solution limits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of adsorbed molecular ruler surfactants, and their general structure.
Figure 2: Resonance-enhanced SHG spectra of (top to bottom) p-nitroanisole, C2 rulers, C4 rulers and C6 rulers adsorbed to a water–cyclohexane interface.
Figure 3: Resonance-enhanced SHG spectra of (top to bottom) C2 rulers, C4 rulers, C6 rulers and C8 rulers adsorbed to a water–1-octanol interface.

Similar content being viewed by others

References

  1. Viceli, J. & Benjamin, I. Adsoprtion at the interface between water and self-assembled monolayers: Structure and electronic spectra. J. Phys. Chem. B 106, 7898–7907 (2002)

    Article  Google Scholar 

  2. Chang, T. M. & Dang, L. X. Molecular dynamics simulations of CCl4-H2O liquid-liquid interface with polarizable potential models. J. Chem. Phys. 104, 6772–6783 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Chipot, C., Wilson, M. A. & Pohorille, A. Interactions of anesthetics with the water-hexane interface. A molecular dynamics study. J. Phys. Chem. B 101, 782–791 (1997)

    Article  CAS  Google Scholar 

  4. DaRocha, S. R. & Rossky, P. J. Surfactant modified CO2-water interface: A molecular view. J. Phys. Chem. B 106, 13250–13261 (2002)

    Article  CAS  Google Scholar 

  5. Senapati, S. & Berkowitz, M. L. Computer simulation study of the interface width of the liquid/liquid interface. Phys. Rev. Lett. 87, 176101 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Lee, L. T., Langevin, D. & Farnoux, B. Neutron reflectivity at liquid interfaces. Physica B 198, 83–88 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Penfold, J., Richardson, R. M., Zarbakhsh, A. & Webster, J. R. P. Recent advances in the study of chemical surfaces and interfaces by specular neutron reflection. J. Chem. Soc. Faraday Trans. 93, 3899–3917 (1997)

    Article  CAS  Google Scholar 

  8. Tikhonov, A. M., Mitrinovic, D. M., Li, M., Huang, Z. & Schlossman, M. L. An X-ray reflectivity study of the water-docosane interface. J. Phys. Chem. B 104, 6336–6339 (2000)

    Article  CAS  Google Scholar 

  9. Steel, W. H., Damkaci, F., Nolan, R. & Walker, R. A. Molecular rulers: New families of molecules for measuring interfacial widths. J. Am. Chem. Soc. 124, 4824–4831 (2002)

    Article  CAS  Google Scholar 

  10. Antoine, A., Bianchi, F., Brevet, P. F. & Girault, H. H. Studies of water/alcohol and air/alcohol interfaces by second harmonic generation. J. Chem. Soc. Faraday Trans. 93, 3833–3838 (1997)

    Article  CAS  Google Scholar 

  11. Corn, R. M. & Higgins, D. A. Optical second harmonic spectroscopy as a probe of surface chemistry. Chem. Rev. 94, 107–125 (1994)

    Article  CAS  Google Scholar 

  12. Eisenthal, K. B. Photochemistry and photophysics of liquid interfaces by second harmonic spectroscopy. J. Phys. Chem. 100, 12997–13006 (1996)

    Article  CAS  Google Scholar 

  13. Zhuang, X., Miranda, P. B., Kim, D. & Shen, Y. R. Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys. Rev. B 59, 12632–12640 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Laurence, C., Nicolet, P. & Dalati, M. T. The empirical treatment of solvent-solute interactions: 15 years of π*. J. Phys. Chem. 98, 5807–5816 (1994)

    Article  CAS  Google Scholar 

  15. Shen, Y. R. Surface properties probed by second harmonic and sum frequency generation. Nature 337, 519–525 (1989)

    Article  ADS  CAS  Google Scholar 

  16. Wang, H., Borguet, E. & Eisenthal, K. B. Polarity of liquid interfaces by second harmonic generation spectroscopy. J. Phys. Chem. A 101, 713–718 (1997)

    Article  CAS  Google Scholar 

  17. Wang, H., Borguet, E. & Eisenthal, K. B. Generalized interface polarity scale based on second harmonic spectroscopy. J. Phys. Chem. B 102, 4927–4932 (1998)

    Article  CAS  Google Scholar 

  18. Ishizaka, S., Kim, H. B. & Kitamura, N. Time-resolved total internal reflection fluorometry study on polarity at a liquid/liquid interface. Anal. Chem. 73, 2421–2428 (2001)

    Article  CAS  Google Scholar 

  19. Benjamin, I. Solvent effects on electronic spectra at liquid interfaces. A continuum electrostatic model. J. Phys. Chem. A 102, 9500–9506 (1998)

    Article  CAS  Google Scholar 

  20. Steel, W. H. & Walker, R. A. Solvent polarity at an aqueous/alkane interface: The effect of solute identity. J. Am. Chem. Soc. 125, 1132–1133 (2003)

    Article  CAS  Google Scholar 

  21. Li, Z. X., Bain, C. D., Thomas, R. K., Duffy, D. C. & Penfold, J. Monolayers of hexadecyltrimethylammonium p-tosylate at the air-water interface 2. Neutron reflection. J. Phys. Chem. B 102, 9473–9480 (1998)

    Article  CAS  Google Scholar 

  22. Penfold, J. & Thomas, R. K. Solvent distribution in non-ionic surfactant monolayers. Phys. Chem. Chem. Phys. 4, 2648–2652 (2002)

    Article  CAS  Google Scholar 

  23. Tikhonov, A. M. & Schlossman, M. L. Surfactant and water ordering in triacontanol monolayers at the water-hexane interface. J. Phys. Chem. B 107, 3344–3347 (2003)

    Article  CAS  Google Scholar 

  24. Schweighofer, K., Essmann, U. & Berkowitz, M. Simulation of sodium dodecyl sulfate at the water-vapor and water-carbon tetrachloride interfaces at low surface coverages. J. Phys. Chem. B 101, 3793–3799 (1997)

    Article  CAS  Google Scholar 

  25. Zhang, X. & Walker, R. A. Discrete partitioning of solvent permittivity at liquid-solid interfaces. Langmuir 17, 4486–4489 (2001)

    Article  CAS  Google Scholar 

  26. Zhang, Z., Mitrinovic, D. M., Williams, S. M., Huang, Z. & Schlossman, M. L. X-ray scattering from monolayers of F(CF2)10(CH2)2OH at the water-(hexane solution) and water-vapor interfaces. J. Chem. Phys. 110, 7421–7432 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Barton, A. F. M. (ed.) IUPAC Solubility Data Series: Alcohols with Water (Pergamon, Oxford, 1984)

  28. Tsonopoulos, C. & Wilson, G. M. High-temperature mutual solubilities of hydrocarbons and water. Am. Inst. Chem. J. 31, 376–384 (1983)

    Google Scholar 

  29. Sangster, J. Octanol-Water Partition Coefficients (ed. Fogg, P. G. T.) 2–15 (Wiley and Sons, New York, 1997)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Corporation and the National Science Foundation through its CAREER Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Walker.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steel, W., Walker, R. Measuring dipolar width across liquid–liquid interfaces with ‘molecular rulers’. Nature 424, 296–299 (2003). https://doi.org/10.1038/nature01791

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01791

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing