Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2

Abstract

Synaptic transmission from excitatory nerve cells in the mammalian brain is largely mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors located at the surface of dendritic spines. The abundance of postsynaptic AMPA receptors correlates with the size of the synapse and the dimensions of the dendritic spine head1,2,3,4. Moreover, long-term potentiation is associated with the formation of dendritic spines as well as synaptic delivery of AMPA receptors5,6,7,8. The molecular mechanisms that coordinate AMPA receptor delivery and spine morphogenesis are unknown. Here we show that overexpression of the glutamate receptor 2 (GluR2) subunit of AMPA receptors increases spine size and density in hippocampal neurons, and more remarkably, induces spine formation in GABA-releasing interneurons that normally lack spines. The extracellular N-terminal domain (NTD) of GluR2 is responsible for this effect, and heterologous fusion proteins of the NTD of GluR2 inhibit spine morphogenesis. We propose that the NTD of GluR2 functions at the cell surface as part of a receptor–ligand interaction that is important for spine growth and/or stability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GluR2 promotes increased number and size of spines.
Figure 2: Spine-inducing determinants of GluR2.
Figure 3: Inhibition of spine morphogenesis by Fc fusion of GluR2 NTD and siRNA knockdown of GluR2.
Figure 4: GluR2 induces dendritic spines in GABA-releasing interneurons.

References

  1. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 4, 1086–1092 (2001)

    Article  CAS  Google Scholar 

  2. Nusser, Z. AMPA and NMDA receptors: similarities and differences in their synaptic distribution. Curr. Opin. Neurobiol. 10, 337–341 (2000)

    Article  CAS  Google Scholar 

  3. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998)

    Article  CAS  Google Scholar 

  4. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nature Neurosci. 2, 618–624 (1999)

    Article  CAS  Google Scholar 

  5. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999)

    Article  CAS  Google Scholar 

  8. Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R. & Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425 (1999)

    Article  ADS  CAS  Google Scholar 

  9. O'Hara, P. J. et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11, 41–52 (1993)

    Article  CAS  Google Scholar 

  10. Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001)

    Article  CAS  Google Scholar 

  11. Jonas, P., Racca, C., Sakmann, B., Seeburg, P. H. & Monyer, H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281–1289 (1994)

    Article  CAS  Google Scholar 

  12. Washburn, M. S., Numberger, M., Zhang, S. & Dingledine, R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J. Neurosci. 17, 9393–9406 (1997)

    Article  CAS  Google Scholar 

  13. Paoletti, P. et al. Molecular organization of a zinc binding N-terminal modulatory domain in a NMDA receptor subunit. Neuron 28, 911–925 (2000)

    Article  CAS  Google Scholar 

  14. Masuko, T. et al. A regulatory domain (R1-R2) in the amino terminus of the N-methyl-D-aspartate receptor: effects of spermine, protons, and ifenprodil, and structural similarity to bacterial leucine/isoleucine/valine binding protein. Mol. Pharmacol. 55, 957–969 (1999)

    Article  CAS  Google Scholar 

  15. Stern-Bach, Y. et al. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345–1357 (1994)

    Article  CAS  Google Scholar 

  16. Armstrong, N., Sun, Y., Chen, G.-Q. & Gouaux, E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Krupp, J. J., Vissel, B., Heinemann, S. F. & Westbrook, G. L. N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron 20, 317–327 (1998)

    Article  CAS  Google Scholar 

  18. Villarroel, A., Regalado, M. P. & Lerma, J. Glycine-independent NMDA receptor desensitization: localization of structural determinants. Neuron 20, 329–339 (1998)

    Article  CAS  Google Scholar 

  19. Choi, Y. B. & Lipton, S. A. Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23, 171–180 (1999)

    Article  CAS  Google Scholar 

  20. Fayyazuddin, A., Villarroel, A., Le Goff, A., Lerma, J. & Neyton, J. Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 25, 683–694 (2000)

    Article  CAS  Google Scholar 

  21. Ayalon, G. & Stern-Bach, Y. Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions. Neuron 31, 103–113 (2001)

    Article  CAS  Google Scholar 

  22. Pasternack, A. et al. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain. J. Biol. Chem. 277, 49662–49667 (2002)

    Article  CAS  Google Scholar 

  23. Leuschner, W. D. & Hoch, W. Subtype-specific assembly of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is mediated by their N-terminal domains. J. Biol. Chem. 274, 16907–16916 (1999)

    Article  CAS  Google Scholar 

  24. Hayashi, T., Umemori, H., Mishina, M. & Yamamoto, T. The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 397, 72–76 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000)

    Article  CAS  Google Scholar 

  26. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000)

    Article  CAS  Google Scholar 

  27. Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993)

    Article  CAS  Google Scholar 

  28. Sala, C. et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001)

    Article  CAS  Google Scholar 

  29. Passafaro, M., Piech, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nature Neurosci. 4, 917–926 (2001)

    Article  CAS  Google Scholar 

  30. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to F. Beretta and P. Grossano for technical support. The work was supported by Telethon-Italy (M.P.), Human Frontier Science Program long-term fellowship (T.N.), the Giovanni Armenise-Harvard Foundation Career Development Program (C.S.) and NIH (M.S.). M.S. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Passafaro or Morgan Sheng.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passafaro, M., Nakagawa, T., Sala, C. et al. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 424, 677–681 (2003). https://doi.org/10.1038/nature01781

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01781

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing