Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the core domain of human cardiac troponin in the Ca2+-saturated form

Abstract

Troponin is essential in Ca2+ regulation of skeletal and cardiac muscle contraction. It consists of three subunits (TnT, TnC and TnI) and, together with tropomyosin, is located on the actin filament. Here we present crystal structures of the core domains (relative molecular mass of 46,000 and 52,000) of human cardiac troponin in the Ca2+-saturated form. Analysis of the four-molecule structures reveals that the core domain is further divided into structurally distinct subdomains that are connected by flexible linkers, making the entire molecule highly flexible. The α-helical coiled-coil formed between TnT and TnI is integrated in a rigid and asymmetric structure (about 80 Å long), the IT arm, which bridges putative tropomyosin-anchoring regions. The structures of the troponin ternary complex imply that Ca2+ binding to the regulatory site of TnC removes the carboxy-terminal portion of TnI from actin, thereby altering the mobility and/or flexibility of troponin and tropomyosin on the actin filament.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the troponin core domain.
Figure 2: Comparison of the four troponin core domain molecules from two crystal forms, Tn46K and Tn52K.
Figure 3: Comparison of the TnC conformations, represented by cylinders (α-helices) and wires (loops).
Figure 4: Side-chain interactions between the subunits.
Figure 5: A schematic representation of the interactions between troponin and other thin filament components.

Similar content being viewed by others

References

  1. Ebashi, S. & Endo, M. Calcium ion and muscle contraction. Prog. Biophys. Mol. Biol. 18, 123–183 (1968)

    Article  CAS  Google Scholar 

  2. Ebashi, S., Endo, M. & Otsuki, I. Control of muscle contraction. Q. Rev. Biophys. 2, 351–384 (1969)

    Article  CAS  Google Scholar 

  3. Ohtsuki, I., Maruyama, K. & Ebashi, S. Regulatory and cytoskeletal proteins of vertebrate skeletal muscle. Adv. Protein Chem. 38, 1–67 (1986)

    Article  CAS  Google Scholar 

  4. Zot, A. S. & Potter, J. D. Structural aspects of troponin–tropomyosin regulation of skeletal muscle contraction. Annu. Rev. Biophys. Biophys. Chem. 16, 535–559 (1987)

    Article  CAS  Google Scholar 

  5. Farah, C. S. & Reinach, F. C. The troponin complex and regulation of muscle contraction. FASEB J. 9, 755–767 (1995)

    Article  CAS  Google Scholar 

  6. Phillips, G. N. Jr, Fillers, J. P. & Cohen, C. Tropomyosin crystal structure and muscle regulation. J. Mol. Biol. 192, 111–131 (1986)

    Article  CAS  Google Scholar 

  7. Vassylyev, D. G., Takeda, S., Wakatsuki, S., Maeda, K. & Maéda, Y. Crystal structure of troponin C in complex with troponin I fragment at 2.3-Å resolution. Proc. Natl Acad. Sci. USA 95, 4847–4852 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Herzberg, O. & James, M. N. Structure of the calcium regulatory muscle protein troponin-C at 2.8 Å resolution. Nature 313, 653–659 (1985)

    Article  ADS  CAS  Google Scholar 

  9. Sundaralingam, M. et al. Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science 227, 945–948 (1985)

    Article  ADS  CAS  Google Scholar 

  10. Slupsky, C. M. & Sykes, B. D. NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 34, 15953–15964 (1995)

    Article  CAS  Google Scholar 

  11. Gasmi-Seabrook, G. M. et al. Solution structures of the C-terminal domain of cardiac troponin C free and bound to the N-terminal domain of cardiac troponin I. Biochemistry 38, 8313–8322 (1999)

    Article  CAS  Google Scholar 

  12. Syska, H., Wilkinson, J. M., Grand, R. J. & Perry, S. V. The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. Biochem. J. 153, 375–387 (1976)

    Article  CAS  Google Scholar 

  13. Talbot, J. A. & Hodges, R. S. Synthetic studies on the inhibitory region of rabbit skeletal troponin I. Relationship of amino acid sequence to biological activity. J. Biol. Chem. 256, 2798–2802 (1981)

    CAS  PubMed  Google Scholar 

  14. Farah, C. S. et al. Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. J. Biol. Chem. 269, 5230–5240 (1994)

    CAS  PubMed  Google Scholar 

  15. Li, M. X., Spyracopoulos, L. & Sykes, B. D. Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. Biochemistry 38, 8289–8298 (1999)

    Article  CAS  Google Scholar 

  16. Ohtsuki, I. Molecular arrangement of troponin-T in the thin filament. J. Biochem. (Tokyo) 86, 491–497 (1979)

    Article  CAS  Google Scholar 

  17. Flicker, P. F., Phillips, G. N. Jr & Cohen, C. Troponin and its interactions with tropomyosin. An electron microscope study. J. Mol. Biol. 162, 495–501 (1982)

    Article  CAS  Google Scholar 

  18. Ohtsuki, I., Onoyama, Y. & Shiraishi, F. Electron microscopic study of troponin. J. Biochem. (Tokyo) 103, 913–919 (1988)

    Article  CAS  Google Scholar 

  19. White, S. P., Cohen, C. & Phillips, G. N. Jr Structure of co-crystals of tropomyosin and troponin. Nature 325, 826–828 (1987)

    Article  ADS  CAS  Google Scholar 

  20. Takeda, S., Kobayashi, T., Taniguchi, H., Hayashi, H. & Maeda, Y. Structural and functional domains of the troponin complex revealed by limited digestion. Eur. J. Biochem. 246, 611–617 (1997)

    Article  CAS  Google Scholar 

  21. Schaertl, S., Lehrer, S. S. & Geeves, M. A. Separation and characterization of the two functional regions of troponin involved in muscle thin filament regulation. Biochemistry 34, 15890–15894 (1995)

    Article  CAS  Google Scholar 

  22. Pearlstone, J. R. & Smillie, L. B. The interaction of rabbit skeletal muscle troponin-T fragments with troponin-I. Can. J. Biochem. Cell Biol. 63, 212–218 (1985)

    Article  CAS  Google Scholar 

  23. Stefancsik, R., Jha, P. K. & Sarkar, S. Identification and mutagenesis of a highly conserved domain in troponin T responsible for troponin I binding: potential role for coiled coil interaction. Proc. Natl Acad. Sci. USA 95, 957–962 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Tanokura, M., Tawada, Y., Ono, A. & Ohtsuki, I. Chymotryptic subfragments of troponin T from rabbit skeletal muscle. Interaction with tropomyosin, troponin I and troponin. C. J. Biochem. (Tokyo) 93, 331–337 (1983)

    Article  CAS  Google Scholar 

  25. Pearlstone, J. R. & Smillie, L. B. Effects of troponin-I plus-C on the binding of troponin-T and its fragments to alpha-tropomyosin. Ca2+ sensitivity and cooperativity. J. Biol. Chem. 258, 2534–2542 (1983)

    CAS  PubMed  Google Scholar 

  26. Morris, E. P. & Lehrer, S. S. Troponin-tropomyosin interactions. Fluorescence studies of the binding of troponin, troponin T, and chymotryptic troponin T fragments to specifically labeled tropomyosin. Biochemistry 23, 2214–2220 (1984)

    Article  CAS  Google Scholar 

  27. Houdusse, A., Love, M. L., Dominguez, R., Grabarek, Z. & Cohen, C. Structures of four Ca2+-bound troponin C at 2.0 Å resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Structure 5, 1695–1711 (1997)

    Article  CAS  Google Scholar 

  28. Ramakrishnan, S. & Hitchcock-DeGregori, S. E. Investigation of the structural requirements of the troponin C central helix for function. Biochemistry 34, 16789–16796 (1995)

    Article  CAS  Google Scholar 

  29. Babu, A., Rao, V. G., Su, H. & Gulati, J. Critical minimum length of the central helix in troponin C for the Ca2+ switch in muscular contraction. J. Biol. Chem. 268, 19232–19238 (1993)

    CAS  PubMed  Google Scholar 

  30. Luo, Y. et al. Photocrosslinking of benzophenone-labeled single cysteine troponin I mutants to other thin filament proteins. J. Mol. Biol. 296, 899–910 (2000)

    Article  CAS  Google Scholar 

  31. Li, Z., Gergely, J. & Tao, T. Proximity relationships between residue 117 of rabbit skeletal troponin-I and residues in troponin-C and actin. Biophys. J. 81, 321–333 (2001)

    Article  CAS  Google Scholar 

  32. Tripet, B., Van Eyk, J. E. & Hodges, R. S. Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. J. Mol. Biol. 271, 728–750 (1997)

    Article  CAS  Google Scholar 

  33. Geeves, M. A., Chai, M. & Lehrer, S. S. Inhibition of actin-myosin subfragment 1 ATPase activity by troponin I and IC: relationship to the thin filament states of muscle. Biochemistry 39, 9345–9350 (2000)

    Article  CAS  Google Scholar 

  34. Huxley, H. E. Structural changes in the actin- and myosin-containing filaments during contraction. Cold Spring Harbor Symp. Quant. Biol. 37, 361–376 (1972)

    Article  Google Scholar 

  35. Haselgrove, J. C X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp. Quant. Biol. 37, 341–352 (1972)

    Article  Google Scholar 

  36. Parry, D. A. & Squire, J. M. Structural role of tropomyosin in muscle regulation: analysis of the x-ray diffraction patterns from relaxed and contracting muscles. J. Mol. Biol. 75, 33–55 (1973)

    Article  CAS  Google Scholar 

  37. Hai, H., Sano, K., Maeda, K., Maéda, Y. & Miki, M. Ca2+- and S1-induced conformational changes of reconstituted skeletal muscle thin filaments observed by fluorescence energy transfer spectroscopy: structural evidence for three states of thin filament. J. Biochem. (Tokyo) 131, 407–418 (2002)

    Article  CAS  Google Scholar 

  38. Lehrer, S. S., Golitsina, N. L. & Geeves, M. A. Actin-tropomyosin activation of myosin subfragment 1 ATPase and thin filament cooperativity. The role of tropomyosin flexibility and end-to-end interactions. Biochemistry 36, 13449–13454 (1997)

    Article  CAS  Google Scholar 

  39. Lorenz, M., Poole, K. J., Popp, D., Rosenbaum, G. & Holmes, K. C. An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J. Mol. Biol. 246, 108–119 (1995)

    Article  CAS  Google Scholar 

  40. McKillop, D. F. & Geeves, M. A. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys. J. 65, 693–701 (1993)

    Article  ADS  CAS  Google Scholar 

  41. Fujita-Becker, S., Kluwe, L., Miegel, A., Maeda, K. & Maeda, Y. Reconstitution of rabbit skeletal muscle troponin from the recombinant subunits all expressed in and purified from E. coli. J. Biochem. (Tokyo) 114, 438–444 (1993)

    Article  CAS  Google Scholar 

  42. Otwinoski, Z. M. W. Processing of X-ray diffraction data collected in oscillation mode (eds Carter, C. W. & Sweet, R. M.) Methods Enzymol 276, 307–326 (1997)

    Article  Google Scholar 

  43. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta. Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  44. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. (eds Carter, C. W. & Sweet, R. M.) Methods Enzymol 276, 472–494 (1997)

    Article  CAS  Google Scholar 

  45. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996)

    Article  CAS  Google Scholar 

  46. Roussel, A. & Cambillau, C. TURBO-FRODO Manual (AFMB-CNRS, Marseille, 1996).

  47. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  48. CCP4 The CCP4 suite: programs for protein crystallography. Acta. Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  49. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structure. Acta Crystallogr. D 24, 946–950 (1991)

    Google Scholar 

  50. Merritt, E. A. & Murphy, E. M. P. Raster3D Version2.0—a program for photorealistic molecular graphics Acta Crystallogr. D 50, 869–873 (1994)

    Google Scholar 

Download references

Acknowledgements

We thank Y. Kawano, S. Adachi, S.-Y. Park, M. Kawamoto and K. Miura for technical help at the beam lines of SPring-8. We also thank S. Ebashi, I. Ohtsuki, F. Oosawa, K. Maruyama and T. Nitta for continuous support and encouragement throughout this work. This work was supported in part by Matsushita Electric Industrials, and by the Special Coordination Funds from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We dedicate this paper to S. Ebashi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soichi Takeda or Yuichiro Maéda.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, S., Yamashita, A., Maeda, K. et al. Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424, 35–41 (2003). https://doi.org/10.1038/nature01780

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01780

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing