Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Palaeoceanographic implications of genetic variation in living North Atlantic Neogloboquadrina pachyderma

Abstract

The shells of the planktonic foraminifer Neogloboquadrina pachyderma have become a classical tool for reconstructing glacial–interglacial climate conditions in the North Atlantic Ocean1,2,3. Palaeoceanographers utilize its left- and right-coiling variants, which exhibit a distinctive reciprocal temperature and water mass related shift in faunal abundance both at present and in late Quaternary sediments1,2,4,5. Recently discovered cryptic genetic diversity in planktonic foraminifers6,7,8 now poses significant questions for these studies. Here we report genetic evidence demonstrating that the apparent ‘single species’ shell-based records of right-coiling N. pachyderma used in palaeoceanographic reconstructions contain an alternation in species as environmental factors change. This is reflected in a species-dependent incremental shift in right-coiling N. pachyderma shell calcite δ18O between the Last Glacial Maximum and full Holocene conditions. Guided by the percentage dextral coiling ratio, our findings enhance the use of δ18O records of right-coiling N. pachyderma for future study. They also highlight the need to genetically investigate other important morphospecies to refine their accuracy and reliability as palaeoceanographic proxies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial distributions of coiling ratios and isotopic differences.
Figure 2: Geographical distribution of genotypes of left-coiling N. pachyderma [Type I (sin.)], the right-coiling form of N. pachyderma [Type I (sin.)], and right-coiling N. pachyderma [Type I (dex.)].
Figure 3: Time series showing climate proxies of two sediment cores versus depth and versus calendar years.

Similar content being viewed by others

References

  1. Ericson, D. B. Coiling direction of Globigerina pachyderma as a climatic index. Science 130, 219–220 (1959)

    Article  ADS  CAS  Google Scholar 

  2. CLIMAP Project Members The surface of the ice-age Earth. Science 191, 1131–1137 (1976)

    Article  ADS  Google Scholar 

  3. Bond, G. C., Broecker, W., Johnsen, S. & McManus, J. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147 (1993)

    Article  ADS  Google Scholar 

  4. Bé, A. W. & Tolderlund, D. S. in The Micropaleontology of the Oceans (eds Funnel, B. M. & Riedel, W. R.) 105–149 (Cambridge Univ. Press, Cambridge, 1971)

    Google Scholar 

  5. Bandy, O. L. Origin and development of Globorotalia (Turborotalia) pachyderma (Ehrenberg). Micropaleontology 18, 294–318 (1972)

    Article  Google Scholar 

  6. de Vargas, C., Norris, R., Zaninetti, L., Gibb, S. W. & Pawlowski, J. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc. Natl Acad. Sci. USA 96, 2864–2868 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Darling, K. F. et al. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 404, 43–47 (2000)

    Article  ADS  Google Scholar 

  8. Stewart, I. A., Darling, K. F., Kroon, D., Wade, C. M. & Troelstra, S. R. Genotypic variability in subarctic Atlantic planktic foraminifera. Mar. Micropaleontol. 43, 143–153 (2001)

    Article  ADS  Google Scholar 

  9. Kipp, N. G. New transfer function for estimating past sea-surface conditions from sea-bed distribution of planktonic foraminiferal assemblages in the North Atlantic. Geol. Soc. Mem. 145, 3–41 (1976)

    Google Scholar 

  10. Pflaumann, U., Duprat, J., Pujol, C. & Labeyrie, L. D. SIMMAX: A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 11, 15–35 (1996)

    Article  ADS  Google Scholar 

  11. Healy-Williams, N., Williams, D. F. & Ehrlich, R. Quantifications of morphotypes in Neogloboquadrina pachyderma using Fourier shape analysis. Antarct. J. US 18, 138–140 (1984)

    Google Scholar 

  12. Williams, D. F., Ehrlich, R., Spero, H. J., Healy-Williams, N. & Gary, A. C. Shape and isotopic differences between conspecific foraminiferal morphotypes and resolution of paleoceanographic results. Palaeogeogr. Palaeoclimatol. Palaeoecol. 64, 153–162 (1988)

    Article  CAS  Google Scholar 

  13. Cifelli, R. Observations of Globigerina pachyderma (Ehrenberg) and Globigerina incompta Cifelli from the North Atlantic Ocean. J. Foram. Res. 3, 157–166 (1973)

    Article  Google Scholar 

  14. Huber, R., Meggers, H., Baumann, K.-H., Raymo, M. E. & Henrich, R. Shell size variation of the planktonic foraminifer Neogloboquadrina pachyderma sin. in the Norwegian Greenland Sea during the last 1.3 Myrs: Implications for paleoceanographic reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 160, 193–212 (2000)

    Article  Google Scholar 

  15. Kellogg, T., Duplessy, J. & Shackleton, N. Planktonic foraminiferal and oxygen isotopic stratigraphy and paleoclimatology of Norwegian Sea deep-sea cores. Boreas 7, 61–73 (1978)

    Article  Google Scholar 

  16. Jansen, E. The use of stable oxygen and carbon isotope stratigraphy as a dating tool. Quat. Int. 1, 151–166 (1989)

    Article  Google Scholar 

  17. Bauch, H. A. in Land-ocean Systems in the Siberian Arctic: Dynamics and History (eds Kassens, H. et al.) 601–613 (Springer, Berlin, 1999)

    Book  Google Scholar 

  18. Oppo, D. W., McManus, J. F. & Cullen, J. L. Abrupt climate events 500,000 to 340,000 years ago: Evidence from subpolar North Atlantic sediments. Science 279, 1335–1338 (1998)

    Article  ADS  CAS  Google Scholar 

  19. McManus, J., Oppo, D. & Cullen, J. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Oppo, D., Keigwin, L. D., McManus, J. F. & Cullen, J. L. Persistent suborbital climate variability in marine isotope stage 5 and Termination II. Paleoceanography 16, 280–292 (2001)

    Article  ADS  Google Scholar 

  21. Simstich, J. Die ozeanische Deckschicht des Europäischen Nordmeers im Abbild stabiler Isotope von Kalkgehäusen unterschiedlicher Planktonforaminiferenarten. Ber.–Rep. Inst. Geowiss., Univ. Kiel 2, 1–96 (1999)

    Google Scholar 

  22. Emiliani, C. Pleistocene temperatures. J. Geol. 63, 538–578 (1955)

    Article  ADS  CAS  Google Scholar 

  23. Spero, H. J., Bijma, J., Bemis, B. & Lea, D. Effects of sea water carbonate chemistry on planktonic foraminifera carbon and oxygen isotope values. Nature 390, 497–500 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Bauch, D., Erlenkeuser, H., Winckler, G., Pavlova, G. & Thiede, J. Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: The “Carbonate Ion Effect” under natural conditions. Mar. Micropaleontol. 45, 83–99 (2002)

    Article  ADS  Google Scholar 

  25. de Vargas, C., Renaud, S., Hilbrecht, H. & Pawlowski, J. Pleistocene adaptive radiation in Globorotalia truncatulinoides: Genetic, morphologic, and environmental evidence. Paleobiology 27, 104–125 (2001)

    Article  Google Scholar 

  26. Bemis, B. E., Spero, H. J. & Thunell, R. C. Using species-specific paleotemperature equations with foraminifera: A case study in the Southern California Bight. Mar. Micropaleontol. 46, 405–430 (2002)

    Article  ADS  Google Scholar 

  27. Darling, K. F., Kucera, M., Wade, C. M., von Langen, P. & Pak, D. Seasonal occurrence of genetic types of planktonic foraminiferal morphospecies in the Santa Barbara Channel. Paleoceanography 18, 1032, doi: 10.1029/2001PA000723 (2003)

    Article  ADS  Google Scholar 

  28. Kandiano, E. S. & Bauch, H. A. Implications of planktic foraminiferal size fractions for the glacial-interglacial paleoceanography of the polar North Atlantic. J. Foram. Res. 32, 245–251 (2002)

    Article  Google Scholar 

  29. Bauch, H. A. et al. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 years. Quat. Sci. Rev. 20, 659–678 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the crew and scientists of RV Polarstern (ARK XV) for their efforts. Sampling on board was conducted by J. Netzer and E. Stangeew. Part of this work was originally conducted within SFB313, and we thank J. Rumohr for unpublished data. D.B. was supported by the Deutsche Forschungsgemeinschaft. This work was supported by the NERC and the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bauch.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauch, D., Darling, K., Simstich, J. et al. Palaeoceanographic implications of genetic variation in living North Atlantic Neogloboquadrina pachyderma. Nature 424, 299–302 (2003). https://doi.org/10.1038/nature01778

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01778

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing