Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates

Abstract

Parallel processes for patterning densely packed nanometre-scale structures are critical for many diverse areas of nanotechnology. Thin films of diblock copolymers1,2,3,4,5,6,7,8,9,10,11 can self-assemble into ordered periodic structures at the molecular scale (5 to 50 nm), and have been used as templates to fabricate quantum dots1,2, nanowires3,4,5, magnetic storage media6, nanopores7 and silicon capacitors8. Unfortunately, perfect periodic domain ordering can only be achieved over micrometre-scale areas at best12,13 and defects exist at the edges of grain boundaries. These limitations preclude the use of block-copolymer lithography for many advanced applications14. Graphoepitaxy12,15, in-plane electric fields3,16, temperature gradients17, and directional solidification14,18 have also been demonstrated to induce orientation or long-range order with varying degrees of success. Here we demonstrate the integration of thin films of block copolymer with advanced lithographic techniques to induce epitaxial self-assembly of domains. The resulting patterns are defect-free, are oriented and registered with the underlying substrate and can be created over arbitrarily large areas. These structures are determined by the size and quality of the lithographically defined surface pattern rather than by the inherent limitations of the self-assembly process. Our results illustrate how hybrid strategies to nanofabrication allow for molecular level control in existing manufacturing processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the strategy used to create chemically nanopatterned surfaces and investigate the epitaxial assembly of block-copolymer domains.
Figure 2: Top-down SEM images of photoresist and PS-b-PMMA copolymer (Lo = 48 nm, film thickness of 60 nm) patterns.
Figure 3: Top-down SEM images and corresponding Fourier transform analysis of PS-b-PMMA copolymer films (Lo = 48 nm, film thickness of 60 nm) on chemically nanopatterned surfaces.
Figure 4: Cross-sectional SEM images of PS-b-PMMA films (Lo = 48 nm, thickness 60 nm) on unpatterned and chemically nanopatterned surfaces.

Similar content being viewed by others

References

  1. Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: periodic arrays of 1011 holes in 1 square centimeter. Science 276, 1401–1404 (1997)

    Article  CAS  Google Scholar 

  2. Li, R. R. et al. Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography. Appl. Phys. Lett. 76, 1689–1691 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Kim, H. C. et al. A route to nanoscopic SiO2 posts via block copolymer templates. Adv. Mater. 13, 795–797 (2001)

    Article  CAS  Google Scholar 

  5. Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735–738 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Cheng, J. Y. et al. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 13, 1174–1178 (2001)

    Article  CAS  Google Scholar 

  7. Chan, V. Z.-H. et al. Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors. Science 286, 1716–1719 (1999)

    Article  CAS  Google Scholar 

  8. Black, C. T. et al. Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Appl. Phys. Lett. 79, 409–411 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Fasolka, M. J. & Mayes, A. M. Block copolymer thin films: physics and applications. Annu. Rev. Mater. Res. 31, 323–355 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Mansky, P., Liu, Y., Huang, E., Russell, T. P. & Hawker, C. Controlling polymer-surface interactions with random copolymer brushes. Science 275, 1458–1460 (1997)

    Article  CAS  Google Scholar 

  11. Huang, E., Rockford, L., Russell, T. P. & Hawker, C. J. Nanodomain control in copolymer thin films. Nature 395, 757–758 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Segalman, R. A., Yokoyama, H. & Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13, 1152–1155 (2001)

    Article  CAS  Google Scholar 

  13. Harrison, C. et al. Mechanisms of ordering in striped patterns. Science 290, 1558–1560 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Rosa, C. D., Park, C., Thomas, E. L. & Lotz, B. Microdomain patterns from directional eutectic solidification and epitaxy. Nature 405, 433–437 (2000)

    Article  ADS  Google Scholar 

  15. Cheng, J. Y., Ross, C. A., Thomas, E. L., Smith, H. I. & Vansco, G. J. Fabrication of nanostructures with long-range order using block copolymer lithography. Appl. Phys. Lett. 81, 3657–3659 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Morkved, T. L. et al. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273, 931–933 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Bodycomb, J., Funaki, Y., Kimishima, K. & Hashimoto, T. Single-grain lamellar microdomain from a diblock copolymer. Macromolecules 32, 2075–2077 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Park, C. et al. Double textured cylindrical block copolymer domains via directional solidification on a topographically patterned substrate. Appl. Phys. Lett. 79, 848–850 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Bates, F. S. & Fedrickson, G. H. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990)

    Article  ADS  CAS  Google Scholar 

  20. Rockford, L. et al. Polymers on nanoperiodic, heterogeneous surfaces. Phys. Rev. Lett. 82, 2602–2605 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Yang, X. M., Peters, R. D., Nealey, P. F., Solak, H. H. & Cerrina, F. Guided self-assembly of symmetric diblock copolymer films on chemically nanopatterned substrates. Macromolecules 33, 9575–9582 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Rockford, L., Mochrie, S. G. J. & Russell, T. P. Propagation of nanopatterned substrate templated ordering of block copolymers in thick films. Macromolecules 34, 1487–1492 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Wang, Q., Nealey, P. F. & de Pablo, J. J. Simulations of the morphology of cylinder-forming asymmetric diblock copolymer thin films on nanopatterned substrates. Macromolecules 36, 1731–1740 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Wang, Q., Nath, S. K., Graham, M. D., Nealey, P. F. & de Pablo, J. J. Symmetric diblock copolymer thin films confined between homogeneous and patterned surfaces: Simulation and theory. J. Chem. Phys. 112, 9996–10010 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Petera, D. & Muthukumar, M. Self-consistent field theory of diblock copolymer melts at patterned surfaces. J. Chem. Phys. 109, 5101–5107 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Solak, H. H. et al. Sub-50 nm period patterns with EUV interference lithography. Microelectron. Eng. 67–8, 56–62 (2003)

    Article  Google Scholar 

  27. Dulcey, C. S. et al. Photochemistry and patterning of self-assembled monolayer films containing aromatic hydrocarbon functional groups. Langmuir 12, 1638–1650 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Cerrina, E. W. Edwards and S. Xiao for discussions, and V. Golovkina and J. Wallace for assistance with the EUV-IL system. This work was supported by the Semiconductor Research Corporation, the National Science Foundation through the Materials Research Science and Engineering Center, and the Camille Dreyfus Teacher-Scholar Award. S.K. acknowledges a research fellowship from the Post-Doctoral Fellowship Program of the Korea Science and Engineering Foundation. Facilities and staff of the CNTech were supported by DARPA and the Intel Corporation, and the Synchrotron Radiation Center is supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. Nealey.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouk Kim, S., Solak, H., Stoykovich, M. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003). https://doi.org/10.1038/nature01775

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01775

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing