Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanometre-scale displacement sensing using a single electron transistor

Abstract

It has been a long-standing goal to detect the effects of quantum mechanics on a macroscopic mechanical oscillator1,2,3. Position measurements of an oscillator are ultimately limited by quantum mechanics, where ‘zero-point motion’ fluctuations in the quantum ground state combine with the uncertainty relation to yield a lower limit on the measured average displacement. Development of a position transducer, integrated with a mechanical resonator, that can approach this limit could have important applications in the detection of very weak forces, for example in magnetic resonance force microsopy4 and a variety of other precision experiments5,6,7. One implementation that might allow near quantum-limited sensitivity is to use a single electron transistor (SET) as a displacement sensor8,9,10,11: the exquisite charge sensitivity of the SET at cryogenic temperatures is exploited to measure motion by capacitively coupling it to the mechanical resonator. Here we present the experimental realization of such a device, yielding an unequalled displacement sensitivity of 2 × 10-15 m Hz-1/2 for a 116-MHz mechanical oscillator at a temperature of 30 mK—a sensitivity roughly a factor of 100 larger than the quantum limit for this oscillator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The device used in the experiment.
Figure 2: Magnetomotive measurements of the beam resonance.
Figure 3: Single electron transistor measurement of the beam motion.
Figure 4: Noise and quantum limits for the device.

Similar content being viewed by others

References

  1. Bocko, M. F. & Onofrio, R. On the measurement of a weak classical force coupled to a harmonic oscillator: Experimental progress. Rev. Mod. Phys. 68, 755–790 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, Cambridge, 1992)

    Book  Google Scholar 

  3. Cho, A. Researchers race to put the quantum in mechanics. Science 299, 36–37 (2002)

    Article  Google Scholar 

  4. Sidles, J. A. et al. Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249–265 (1995)

    Article  ADS  CAS  Google Scholar 

  5. Armour, A. D., Blencowe, M. P. & Schwab, K. C. Entanglement and decoherence of a micromechanical resonator via coupling to a cooper-pair box. Phys. Rev. Lett. 88, 148301 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Tobar, M. E. & Blair, D. G. Sensitivity analysis of a resonant-mass gravitational wave antenna with a parametric transducer. Rev. Sci. Instrum. 66, 2751–2759 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Long, J. C. et al. Upper limits to submillimetre-range forces from extra space-time dimensions. Nature 421, 922–925 (2003)

    Article  ADS  CAS  Google Scholar 

  8. White, J. D. An ultra high resolution displacement transducer using the Coulomb blockade electrometer. Jap. J. Appl. Phys 2 32, L1571–L1573 (1993)

    Article  Google Scholar 

  9. Blencowe, M. P. & Wybourne, M. N. Sensitivity of a micromechanical displacement detector based on the radio-frequency single-electron transistor. Appl. Phys. Lett. 77, 3845–3847 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Zhang, Y. & Blencowe, M. P. Intrinsic noise of a micro-mechanical displacement detector based on the radio-frequency single-electron transistor. J. Appl. Phys. 91, 4249–4255 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Knobel, R. & Cleland, A. N. Piezoelectric displacement sensing with a single-electron transistor. Appl. Phys. Lett. 81, 2258–2260 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D. & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. 1. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980)

    Article  ADS  Google Scholar 

  13. Huang, X. M. H., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanoelectromechanical systems: Nanodevice motion at microwave frequencies. Nature 421, 496 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Abramovici, A. et al. Improved sensitivity in a gravitational wave interferometer and implications for LIGO. Phys. Lett. A 218, 157–163 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Mamin, H. & Rugar, D. Sub-attonewton force detection at millikelvin temperature. Appl. Phys. Lett. 79, 3358–3360 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Cleland, A. N. & Roukes, M. L. External control of dissipation in a nanometer-scale radiofrequency mechanical resonator. Sensors Actuators A 72, 256–261 (1999)

    Article  CAS  Google Scholar 

  17. Beck, R. G. et al. GaAs/AlGaAs self-sensing cantilevers for low temperature scanning probe microscopy. Appl. Phys. Lett. 73, 1149–1151 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. The radiofrequency single-electron transistor (rf-SET): A fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Devoret, M. H. & Schoelkopf, R. J. Amplifying quantum signals with the single-electron transistor. Nature 406, 1039–1046 (2000)

    Article  CAS  Google Scholar 

  20. Cleland, A. N., Aldridge, J. S., Driscoll, D. C. & Gossard, A. C. Nanomechanical displacement sensing using a quantum point contact. Appl. Phys. Lett. 81, 1699–1701 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Fulton, T. A. & Dolan, G. J. Observations of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett. 59, 109–112 (1987)

    Article  ADS  CAS  Google Scholar 

  22. Knobel, R., Yung, C. S. & Cleland, A. N. Single-electron transistor as a radio-frequency mixer. Appl. Phys. Lett. 81, 532–534 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Martinis, J. M., Devoret, M. H. & Clarke, J. Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction. Phys. Rev. B 35, 4682 (1987)

    Article  ADS  CAS  Google Scholar 

  24. Greywall, D. S., Yurke, B., Busch, P. A., Pargellis, A. N. & Willett, R. A. Evading amplifier noise in nonlinear oscillators. Phys. Rev. Lett. 72, 2992–2995 (1994)

    Article  ADS  CAS  Google Scholar 

  25. Cleland, A. N. & Roukes, M. L. Fabrication of high frequency nanometer scale resonators from bulk Si crystals. Appl. Phys. Lett. 69, 2653 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Yang, J., Ono, T. & Esashi, M. Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers. Appl. Phys. Lett. 77, 3860–3862 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Yasumura, K. Y. et al. Quality factors in micron- and submicron-thick cantilevers. J. Microelectromech. Syst. 9, 117–125 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Yung, D. Schmidt and S. Aldridge for conversations, and B. Hill for processing support. We acknowledge support provided by the National Science Foundation XYZ-On-A-Chip programme, by the Army Research Office, and by the Office of Naval Research/DARPA SPINS programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Cleland.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knobel, R., Cleland, A. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003). https://doi.org/10.1038/nature01773

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01773

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing