Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dosage sensitivity and the evolution of gene families in yeast

Abstract

According to what we term the balance hypothesis, an imbalance in the concentration of the subcomponents of a protein–protein complex can be deleterious1. If so, there are two consequences: first, both underexpression and overexpression of protein complex subunits should lower fitness, and second, the accuracy of transcriptional co-regulation of subunits should reflect the deleterious consequences of imbalance. Here we show that all these predictions are upheld in yeast (Saccharomyces cerevisiae). This supports the hypothesis2,3 that dominance is a by-product of physiology and metabolism rather than the result of selection to mask the deleterious effects of mutations. Beyond this, single-gene duplication of protein subunits is expected to be harmful, as this, too, leads to imbalance. As then expected, we find that members of large gene families are rarely involved in complexes. The balance hypothesis therefore provides a single theoretical framework for understanding components both of dominance and of gene family size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proportion of genes in protein complex as a function of heterozygote fitness.
Figure 2: The frequency of co-expressed interacting gene pairs decreases with increasing mean heterozygote fitness (N = 454, χ2 = 37.59, d.f. = 3, P < 10-7).

Similar content being viewed by others

References

  1. Veitia, R. A. Exploring the etiology of haploinsufficiency. BioEssays 24, 175–184 (2002)

    Article  CAS  Google Scholar 

  2. Wright, S. Physiological and evolutionary theories of dominance. Am. Nat. 68, 25–53 (1934)

    Google Scholar 

  3. Kacser, H. & Burns, J. A. The molecular basis of dominance. Genetics 97, 639–666 (1981)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mewes, H. W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30, 31–34 (2002)

    Article  CAS  Google Scholar 

  5. Rottensteiner, H., Kal, A. J., Hamilton, B., Ruis, H. & Tabak, H. F. A heterodimer of the Zn2Cys6 transcription factors Pip2p and Oaf1p controls induction of genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Eur. J. Biochem. 247, 776–783 (1997)

    Article  CAS  Google Scholar 

  6. Wu, X., Hart, H., Cheng, C., Roach, P. J. & Tatchell, K. Characterization of Gac1p, a regulatory subunit of protein phosphatase type I involved in glycogen accumulation in Saccharomyces cerevisiae. Mol. Genet. Genomics 265, 622–635 (2001)

    Article  CAS  Google Scholar 

  7. Abruzzi, K. C., Smith, A., Chen, W. & Solomon, F. Protection from free beta-tubulin by the beta-tubulin binding protein Rbl2p. Mol. Cell Biol. 22, 138–147 (2002)

    Article  CAS  Google Scholar 

  8. Yuan, J. et al. The instability of the membrane skeleton in thalassemic red blood cells. Blood 86, 3945–3950 (1995)

    CAS  PubMed  Google Scholar 

  9. Bray, D. & Lay, S. Computer-based analysis of the binding steps in protein complex formation. Proc. Natl Acad. Sci. USA 94, 13493–13498 (1997)

    Article  CAS  Google Scholar 

  10. Warner, J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999)

    Article  CAS  Google Scholar 

  11. Steinmetz, L. M. et al. Systematic screen for human disease genes in yeast. Nature Genet. 31, 400–404 (2002)

    Article  CAS  Google Scholar 

  12. van Holde, K. E., Johnson, W. C. & Shing Ho, P. Principles of Physical Biochemistry (Prentice Hall, Upper Saddle River, New Jersey, 1998)

    Google Scholar 

  13. Stevens, R. C. & Davis, T. N. Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae. J. Cell Biol. 142, 711–722 (1998)

    Article  CAS  Google Scholar 

  14. Ge, H., Liu, Z., Church, G. M. & Vidal, M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nature Genet. 29, 482–486 (2001)

    Article  CAS  Google Scholar 

  15. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002)

    Article  CAS  Google Scholar 

  16. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, Oxford, 1930)

    Book  Google Scholar 

  17. Li, B., Vilardell, J. & Warner, J. R. An RNA structure involved in feedback regulation of splicing and of translation is critical for biological fitness. Proc. Natl Acad. Sci. USA 93, 1596–1600 (1996)

    Article  CAS  Google Scholar 

  18. Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997)

    Article  CAS  Google Scholar 

  19. Kihm, A. J. et al. An abundant erythroid protein that stabilizes free α-haemoglobin. Nature 417, 758–763 (2002)

    Article  CAS  Google Scholar 

  20. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000)

    Article  CAS  Google Scholar 

  21. Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity (Blackwell Science, Malden, Massachusetts, 2001)

    Google Scholar 

  22. Hodgkin, J. Fluxes, doses and poisons—molecular perspectives on dominance. Trends Genet. 9, 1–2 (1993)

    Article  CAS  Google Scholar 

  23. Kratz, E., Dugas, J. C. & Ngai, J. Odorant receptor gene regulation: Implications from genomic organization. Trends Genet. 18, 29–34 (2002)

    Article  CAS  Google Scholar 

  24. Johnston, M. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet. 15, 29–33 (1999)

    Article  CAS  Google Scholar 

  25. Hodges, P. E., McKee, A. H., Davis, B. P., Payne, W. E. & Garrels, J. I. The Yeast Proteome Database (YPD): A model for the organization and presentation of genome-wide functional data. Nucleic Acids Res. 27, 69–73 (1999)

    Article  CAS  Google Scholar 

  26. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)

    Article  CAS  Google Scholar 

  27. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002)

    Article  CAS  Google Scholar 

  28. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  CAS  Google Scholar 

  29. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998)

    Article  CAS  Google Scholar 

  30. Sokal, R. & Rohlf, M. Biometry (Freeman, New York, 1995)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank C. Scharfe, L. Steinmetz, D. Bray and B. Charlesworth for comments on the manuscript. B.P. is supported by an EU Marie Curie Fellowship, C.P. by a Royal Society/Nato Fellowship and L.D.H. by the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence D. Hurst.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papp, B., Pál, C. & Hurst, L. Dosage sensitivity and the evolution of gene families in yeast. Nature 424, 194–197 (2003). https://doi.org/10.1038/nature01771

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01771

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing