Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging


Advances in extreme-ultraviolet (EUV) and X-ray optics are providing powerful new capabilities in high-resolution imaging and trace-element analysis of microscopic specimens1, and the potential for fabricating devices of smaller critical dimensions in next-generation integrated circuit lithography2. However, achieving the highest resolution with such optics usually requires the illuminating EUV or X-ray beam to be highly monochromatic. It would therefore be highly desirable to have large-field-of-view, sub-100-nm resolution optics that are achromatic to a significant degree, allowing more light to be utilized from broader bandwidth sources such as laser-produced plasmas. Here we report an achromatic Fresnel optical system for EUV or X-ray radiation that combines a Fresnel zone plate with a refractive lens with opposite chromatic aberration. We use the large anomalous dispersion property of the refractive lens material near an absorption edge to make its fabrication practical. The resulting structure can deliver a resolution comparable to that of the Fresnel zone plates that have achieved the highest resolution (25 nm; ref. 3) in the entire electromagnetic spectrum, but with an improvement of two or more orders of magnitude in spectral bandwidth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principle of an achromatic Fresnel lens, and an example of how it can be realized in a single optic.
Figure 2: X-ray optical constants and their consequences for EUV and soft X-ray achromatic Fresnel objectives.

Similar content being viewed by others


  1. Meyer-Ilse, W., Warwick, T. & Attwood, D. (eds) X-ray Microscopy: Proceedings of the Sixth International Conference (American Institute of Physics, Melville, New York, 2000)

    Google Scholar 

  2. Chapman, H. N. et al. First lithographic results from the extreme ultraviolet engineering test stand. J. Vac. Sci. Technol. B 19, 2389–2395 (2001)

    Article  CAS  Google Scholar 

  3. Peuker, M. High-efficiency nickel phase zone plates with 20 nm minimum outermost zone width. Appl. Phys. Lett. 78, 2208–2210 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Röntgen, W. C. Über eine neue Art von Strahlen. Vorläufige Mittheilung. Sber. Phys.-Med. Ges. Würzb. 137, 132–141 (1895)

    Google Scholar 

  5. Röntgen, W. C. On a new kind of rays. Nature 53, 274–276 (1896)

    Google Scholar 

  6. Einstein, A. Lassen sich Brechungsexponenten der Korper für Röntgenstrahlen experimentell ermitteln? Verh. Dtsch. Phys. Ges. 20, 86–87 (1918)

    CAS  Google Scholar 

  7. Kirkpatrick, P. & Baez, A. V. Formation of optical images by x-rays. J. Opt. Soc. Am. 38, 766–774 (1948)

    Article  ADS  CAS  Google Scholar 

  8. Hignette, O. et al. in X-ray Micro- and Nano-Focusing: Applications and Techniques II (ed. McNulty, I.) 105–116 (Proc. SPIE, The International Society for Optical Engineering, San Diego, 2001)

    Google Scholar 

  9. Baez, A. V. A self-supporting metal Fresnel zone-plate to focus extreme ultra-violet and soft X-rays. Nature 186, 958 (1960)

    Article  ADS  Google Scholar 

  10. Michette, A. G. Optical Systems for Soft X-Rays (Plenum, New York, 1986)

    Book  Google Scholar 

  11. Yang, B. X. Fresnel and refractive lenses for X-rays. Nucl. Instrum. Meth. Phys. Res. A 328, 578–587 (1993)

    Article  ADS  Google Scholar 

  12. Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for focusing high energy X-rays. Nature 384, 49–51 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Lengeler, B. et al. Parabolic refractive X-ray lenses. J. Synchrotron Radiat. 9, 119–124 (2002)

    Article  CAS  PubMed Central  Google Scholar 

  14. Spiller, E. Low-loss reflection coatings using absorbing materials. Appl. Phys. Lett. 20, 365–367 (1972)

    Article  ADS  CAS  Google Scholar 

  15. Naulleau, P. et al. Sub-70-nm EUV lithography at the Advanced Light Source static microfield exposure station using the ETS Set-2 optic. J. Vac. Sci. Technol. B 20, 2829–2833 (2002)

    Article  CAS  Google Scholar 

  16. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993)

    Article  ADS  CAS  Google Scholar 

  17. Dobson, S. L., Sun, P.-C. & Fainman, Y. Diffractive lenses for chromatic confocal imaging. Appl. Opt. 36, 4744–4748 (1997)

    Article  ADS  CAS  PubMed Central  Google Scholar 

  18. Michette, A. G., Buckley, C., Gallo, F., Powell, K. & Pfauntsch, S. J. in Advances in X-ray Optics (ed. Freund, A. K. et al.) 303–310 (Proceedings SPIE Vol. 4145, The International Society for Optical Engineering, Bellingham, Washington, 2000)

    Google Scholar 

  19. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991)

    Article  ADS  CAS  Google Scholar 

  20. Jackson, J. D. Classical Electrodynamics (Wiley & Sons, New York, 1975)

    MATH  Google Scholar 

  21. Stern, M. B. & Medeiros, S. S. Deep three-dimensional microstructure fabrication for infrared binary optics. J. Vac. Sci. Technol. B 10, 2520–2525 (1992)

    Article  CAS  Google Scholar 

  22. Walsby, E. D. et al. Multilevel silicon diffractive optics for terahertz waves. J. Vac. Sci. Technol. B 20, 2780–2783 (2002)

    Article  CAS  Google Scholar 

  23. Hirai, Y. et al. Imprint lithography for curved cross-sectional structure using replicated Ni mold. J. Vac. Sci. Technol. B 20, 2867–2871 (2002)

    Article  CAS  Google Scholar 

  24. Young, M. Zone plates and their aberrations. J. Opt. Soc. Am. 62, 972–976 (1972)

    Article  ADS  Google Scholar 

  25. van Buuren, T. W. H. et al. Electronic structure of silicon nanocrystals as a function of particle size. Abstr. Pap. Am. Chem. Soc. 213, 313 (1997)

    Google Scholar 

  26. Liu, R. S. et al. Evidence for electron-doped (n-type) superconductivity in the infinite-layer (Sr0.9La0.1)CuO2 compound by X-ray absorption near-edge spectroscopy. Solid State Commun. 118, 367–370 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Dambach, S. et al. Novel interferometer in the soft x-ray region. Phys. Rev. Lett. 80, 5473–5476 (1998)

    Article  ADS  CAS  Google Scholar 

Download references


We thank J. Kirz for discussions, and S. Frigo for information about the calculation of Kramers–Kronig transforms.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wenbing Yun.

Ethics declarations

Competing interests

A US patent has been applied for on behalf of Xradia Inc. regarding achromatic Fresnel optics. Pre-commercialization development efforts are presently underway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Yun, W. & Jacobsen, C. Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424, 50–53 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing