Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong population substructure is correlated with morphology and ecology in a migratory bat

Abstract

Examining patterns of inter-population genetic diversity can provide valuable information about both historical and current evolutionary processes affecting a species. Population genetic studies of flying and migratory species such as bats and birds have traditionally shown minimal population substructure, characterized by high levels of gene flow between populations1,2. In general, strongly substructured mammalian populations either are separated by non-traversable barriers or belong to terrestrial species with low dispersal abilities3. Species with female philopatry (the tendency to remain in or consistently return to the natal territory) might show strong substructure when examined with maternally inherited mitochondrial DNA, but this substructure generally disappears when biparentally inherited markers are used, owing to male-mediated gene flow4. Male-biased dispersal is considered typical for mammals5, and philopatry in both sexes is rare. Here we show strong population substructure in a migratory bat species, and philopatry in both sexes, as indicated by concordance of nuclear and mtDNA findings. Furthermore, the genetic structure correlates with local biomes and differentiation in wing morphology. There is therefore a close correlation of genetic and morphological differentiation in sympatric subspecific populations of this mammalian species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of major M. s. natalensis colonies and subpopulations in relation to the major biomes20 of South Africa.
Figure 2: PCA of M. s. natalensis colony differentiation, generated from microsatellite data in PCA-GEN.
Figure 3: Minimum spanning network of 55 unique mtDNA control region sequence haplotypes identified in M. s. natalensis colonies, superimposed over a map of South Africa.
Figure 4: PCA of M. s. natalensis wing morphology.

Similar content being viewed by others

References

  1. McCracken, G. F., McCracken, M. K. & Vawter, A. T. Genetic structure in migratory populations of the bat Tadarida brasiliensis mexicana. J. Mammal. 75, 500–510 (1994)

    Article  Google Scholar 

  2. Ball, R. M. J., Freeman, S., James, F. C., Bermingham, E. & Avise, J. C. Phylogeographic population structure of Red-winged blackbirds assessed by mitochondrial DNA. Proc. Natl Acad. Sci. USA 85, 1558–1562 (1988)

    Article  CAS  Google Scholar 

  3. Avise, J. C. et al. Intraspecific phylogeography: The mtDNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18, 489–522 (1987)

    Article  Google Scholar 

  4. Petit, E. & Mayer, F. Male dispersal in the noctule bat (Nyctalus noctula): Where are the limits? Proc. R. Soc. Lond. B 266, 1717–1722 (1999)

    Article  CAS  Google Scholar 

  5. Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980)

    Article  Google Scholar 

  6. van der Merwe, M. Aspects of the social behaviour of the Natal clinging bat, Miniopterus schreibersii natalensis (A. Smith, 1834). Mammalia 37, 379–389 (1973)

    Article  Google Scholar 

  7. Paetkau, D., Waits, L. P., Clarkson, P. L., Craighead, L. & Strobeck, C. An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics 147, 1943–1957 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Norman, J. A., Moritz, C. & Limpus, C. J. Mitochondrial DNA control region polymorphisms: Genetic markers for ecological studies of marine turtles. Mol. Ecol. 3, 363–373 (1994)

    Article  CAS  Google Scholar 

  9. Worthington Wilmer, J., Moritz, C., Hall, L. & Toop, J. Extreme population structuring in the threatened ghost bat, Macroderma gigas: Evidence from mitochondrial DNA. Proc. R. Soc. Lond. B 257, 193–198 (1994)

    Article  Google Scholar 

  10. Cardinal, B. R. & Christidis, L. Mitochondrial DNA and morphology reveal three geographically distinct lineages of the large bentwing bat (Miniopterus schreibersii) in Australia. Aust. J. Zool. 48, 1–19 (2000)

    Article  Google Scholar 

  11. Wilkinson, G. S. The social organization of the common vampire bat. II. Mating system, genetic structure and relatedness. Behav. Ecol. Sociobiol. 17, 123–134 (1985)

    Google Scholar 

  12. Kerth, G., Mayer, F. & Konig, B. Mitochondrial DNA (mtDNA) reveals that female Bechstein's bats live in closed societies. Mol. Ecol. 9, 793–800 (2000)

    Article  CAS  Google Scholar 

  13. Wilkinson, G. S. & Chapman, A. M. Length and sequence variation in evening bat D-Loop mtDNA. Genetics 128, 607–617 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Thompson, M. J. A. Roost philopatry in female pipistrelle bats Pipistrellus pipistrellus. J. Zool. 228, 673–679 (1992)

    Article  Google Scholar 

  15. Amos, B., Schlotterer, C. & Tautz, D. Social structure of pilot whales revealed by analytical DNA profiling. Science 260, 670–672 (1993)

    Article  CAS  Google Scholar 

  16. Burland, T. M., Barratt, E. M., Beaumont, M. A. & Racey, P. A. Population genetic structure and gene flow in a gleaning bat, Plecotus auritus. Proc. R. Soc. Lond. B 266, 975–980 (1999)

    Article  Google Scholar 

  17. Palmeirim, J. M. & Rodrigues, L. in Ecology, Evolution and Behaviour of Bats (eds Racey, P. A. & Swift, S. M.) 219–231 (Clarendon, Oxford, 1995)

    Google Scholar 

  18. Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Phil. Trans. R. Soc. Lond. B 316, 335–427 (1987)

    Article  Google Scholar 

  19. Fenton, M. B. The foraging behaviour and ecology of animal-eating bats. Can. J. Zool. 68, 411–422 (1990)

    Article  Google Scholar 

  20. Cowling, R. M., Richardson, D. M. & Pierce, S. M. (eds) Vegetation of Southern Africa (Cambridge Univ. Press, 1997)

  21. Rautenbach, I. L., Kemp, A. C. & Scholtz, C. H. Fluctuations in availability of arthropods correlated with microchiropteran and avian predator activities. Koedoe 31, 77–90 (1988)

    Article  Google Scholar 

  22. Bernard, R. T. F. Reproductive synchrony and annual variation in foetal growth rate in the long-fingered bat (Miniopterus schreibersii). J. Zool. 232, 485–490 (1994)

    Article  Google Scholar 

  23. Racey, P. A. & Entwistle, A. C. in Reproductive Biology of Bats (eds Crichton, E. G. & Krutzsch, P. H.) 363–414 (Academic, London, 2000)

    Book  Google Scholar 

  24. Worthington Wilmer, J. & Barratt, E. M. A non-lethal method of tissue sampling for genetic studies of Chiropterans. Bat Res. News 37, 1–3 (1996)

    Google Scholar 

  25. Miller-Butterworth, C. M., Jacobs, D. S. & Harley, E. H. Isolation and characterisation of highly polymorphic microsatellite loci in Schreibers' long-fingered bat, Miniopterus schreibersii (Chiroptera: Vespertilionidae). Mol. Ecol. Notes 2, 139–141 (2002)

    Article  CAS  Google Scholar 

  26. Moore, S. S., Hale, P. & Byrne, K. NCAM: a polymorphic microsatellite locus conserved across eutherian mammal species. Anim. Genet. 29, 33–36 (1998)

    Article  CAS  Google Scholar 

  27. Raymond, M., Rousset, F. et al. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248 (1995)

    Article  Google Scholar 

  28. Goodman, S. RST Calc: a collection of computer programs for calculating unbiased estimates of genetic differentiation and determining their significance for microsatellite data. Mol. Ecol. 6, 881–885 (1997)

    Article  CAS  Google Scholar 

  29. Saunders, M. B. & Barclay, R. M. Ecomorphology of insectivorous bats: A test of predictions using two morphologically similar species. Ecology 73, 1335–1345 (1992)

    Article  Google Scholar 

  30. Harley, E. H. & Miller-Butterworth, C. M. A software assistant for bat wing measurements. Bat Res. News 41, 99–102 (2000)

    Google Scholar 

Download references

Acknowledgements

We thank R. Bernard, P. Taylor, B. Eick, C. Logan, M. Kirkman and R. Louw for assistance with obtaining samples; P. Owen, I. Baumgarten, C. van Heerden and D. James for technical assistance in the laboratory; and M. Butterworth and E. Teeling for constructive comments on the manuscript. This work was funded by grants from the National Research Foundation of South Africa and the University Research Committee of the University of Cape Town.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandra M. Miller-Butterworth.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller-Butterworth, C., Jacobs, D. & Harley, E. Strong population substructure is correlated with morphology and ecology in a migratory bat. Nature 424, 187–191 (2003). https://doi.org/10.1038/nature01742

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01742

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing