Abstract
Following the realization of Bose–Einstein condensates in atomic gases, an experimental challenge is the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, bosonic atoms in a Bose-Einstein condensate have been coupled to electronic ground-state molecules through photoassociation1 or a magnetic field Feshbach resonance2. The availability of atomic Fermi gases offers the prospect of coupling fermionic atoms to bosonic molecules, thus altering the quantum statistics of the system. Such a coupling would be closely related to the pairing mechanism in a fermionic superfluid, predicted to occur near a Feshbach resonance3,4. Here we report the creation and quantitative characterization of ultracold 40K2 molecules. Starting with a quantum degenerate Fermi gas of atoms at a temperature of less than 150 nK, we scan the system over a Feshbach resonance to create adiabatically more than 250,000 trapped molecules; these can be converted back to atoms by reversing the scan. The small binding energy of the molecules is controlled by detuning the magnetic field away from the Feshbach resonance, and can be varied over a wide range. We directly detect these weakly bound molecules through their radio-frequency photodissociation spectra; these probe the molecular wavefunction, and yield binding energies that are consistent with theory.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Wynar, R., Freeland, R. S., Han, D. J., Ryu, C. & Heinzen, D. J. Molecules in a Bose-Einstein condensate. Science 287, 1016–1019 (2002)
Donley, E. A., Claussen, N. R., Thompson, S. T. & Wieman, C. E. Atom–molecule coherence in a Bose–Einstein condensate. Nature 417, 529–533 (2002)
Holland, M., Kokkelmans, S. J. J. M. F., Chiofalo, M. L. & Walser, R. Resonance superfluidity in a quantum degenerate Fermi gas. Phys Rev. Lett. 87, 120406 (2001)
Timmermans, E., Furuya, K., Milloni, P. W. & Kerman, A. K. Prospect of creating a composite Fermi-Bose superfluid. Phys. Lett. A 285, 228–233 (2001)
Feshbach, H. A unified theory of nuclear reactions. II. Ann. Phys. (NY) 19, 287–313 (1962)
Stwalley, W. C. Stability of spin-aligned hydrogen at low temperatures and high magnetic fields: New field-dependent scattering resonances and predissociations. Phys. Rev. Lett. 37, 1628–1631 (1976)
Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114–4122 (1993)
Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998)
Cornish, S. L., Claussen, N. R., Roberts, J. L., Cornell, E. A. & Wieman, C. E. Stable 85Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett. 85, 1795–1798 (2000)
Loftus, T., Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Resonance control of elastic collisions in an optically trapped Fermi gas of atoms. Phys. Rev. Lett. 88, 173201 (2002)
Dieckmann, K. et al. Decay of an ultracold fermionic lithium gas near a Feshbach resonance. Phys. Rev. Lett. 89, 203201 (2002)
O'Hara, K. M. et al. Measurement of the zero crossing in a Feshbach resonance of fermionic 6Li. Phys. Rev. A 66, 041401 (2002)
Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Tuning p-wave interactions in an ultracold Fermi gas of atoms. Phys. Rev. Lett. 90, 053201 (2003)
O'Hara, K. M., Hemmer, S. L., Gehm, M. E., Granade, S. R. & Thomas, J. E. Observation of a strongly interacting degenerate Fermi gas of atoms. Science 298, 2179–2182 (2002)
Regal, C. A. & Jin, D. S. Measurement of positive and negative scattering lengths in a Fermi gas of atoms. Phys. Rev. Lett. (in the press)
Bourdel, T. et al. Measurement of interactions energy near a Feshbach resonance in a 6Li Fermi gas. Preprint at 〈http://arXiv.org/cond-mat/0303079〉 (2003).
Timmermans, E., Tommasini, P., Hussein, M. & Kerman, A. Feshbach resonances in atomic Bose-Einstein condensates. Phys. Rep. 315, 199–230 (1999)
Abeelen, F. A. & Verhaar, B. J. Time-dependent Feshbach resonance scattering and anomalous decay of a Na Bose-Einstein condensate. Phys. Rev. Lett. 83, 1550–1553 (1999)
Mies, F. H., Tiesinga, E. & Julienne, P. S. Manipulation of Feshbach resonance in ultracold atomic collisions using time-dependent magnetic fields. Phys. Rev. A 61, 022721 (2000)
Stenger, J. et al. Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances. Phys. Rev. Lett. 82, 2422–2425 (1999)
DeMarco, B. & Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999)
Soldán, P., Cvitas, M. T., Hutson, J. M., Honvault, P. & Launay, J.-M. Quantum dynamics of ultracold Na + Na2 collisions. Phys. Rev. Lett. 89, 153201 (2002)
Ratcliff, L. B., Fish, J. L. & Konowalow, D. D. Electronic transition dipole moment functions for transitions among the twenty-six lowest-lying states of Li2 . J. Mol. Spectrosc. 122, 293–312 (1987)
Balakrishnan, N., Forrey, R. C. & Dalgarno, A. Quenching of H2 vibrations in ultracold 3He and 4He collisions. Phys. Rev. Lett. 80, 3224–3227 (1998)
Forrey, R. C., Balakrisnan, N., Dalgarno, A., Haggerty, M. R. & Heller, E. J. Quasiresonant energy transfer in ultracold atom-diatom collisions. Phys. Rev. Lett. 82, 2657–2660 (1999)
Petrosyan, K. G. Fermionic atom laser. JETP Lett. 70, 11–16 (1999)
Torma, P. & Zoller, P. Laser probing of atomic Cooper pairs. Phys. Rev. Lett. 85, 487–490 (2000)
Acknowledgements
We thank E. A. Cornell, C. E. Wieman, C. H. Greene and S. Inouye for discussions. This work was supported by the NSF and NIST; C.A.R. acknowledges support from the Hertz Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Rights and permissions
About this article
Cite this article
Regal, C., Ticknor, C., Bohn, J. et al. Creation of ultracold molecules from a Fermi gas of atoms. Nature 424, 47–50 (2003). https://doi.org/10.1038/nature01738
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature01738
This article is cited by
-
A quantum engine in the BEC–BCS crossover
Nature (2023)
-
Evidence for the association of triatomic molecules in ultracold 23Na40K + 40K mixtures
Nature (2022)
-
Modulation of localized solutions of an inhomogeneous cigar-shaped superfluid fermion gas
Nonlinear Dynamics (2022)
-
Spectroscopic probes of quantum gases
Nature Physics (2021)
-
Molecular collisions: From near-cold to ultra-cold
Frontiers of Physics (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.