Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium

Abstract

Tetrachloroethene (PCE) and trichloroethene (TCE) are ideal solvents for numerous applications, and their widespread use makes them prominent groundwater pollutants. Even more troubling, natural biotic and abiotic processes acting on these solvents lead to the accumulation of toxic intermediates (such as dichloroethenes) and carcinogenic intermediates (such as vinyl chloride)1,2,3,4. Vinyl chloride was found in at least 496 of the 1,430 National Priorities List sites identified by the US Environmental Protection Agency, and its precursors PCE and TCE are present in at least 771 and 852 of these sites, respectively5. Here we describe an unusual, strictly anaerobic bacterium that destroys dichloroethenes and vinyl chloride as part of its energy metabolism, generating environmentally benign products (biomass, ethene and inorganic chloride). This organism might be useful for cleaning contaminated subsurface environments and restoring drinking-water reservoirs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micrographs of isolate BAV1.
Figure 2: VC-dependent growth of isolate BAV1.

Similar content being viewed by others

References

  1. Kielhorn, J., Melber, C., Wahnschaffe, U., Aitio, A. & Mangelsdof, I. Vinyl chloride: still a cause for concern. Environ. Health Perspect. 108, 579–588 (2000)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Mohn, W. W. & Tiedje, J. M. Microbial reductive dehalogenation. Microbiol. Rev. 56, 482–507 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Roberts, A. L. et al. Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ. Sci. Technol. 30, 2654–2659 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Vogel, T. M., Criddle, C. S. & McCarty, P. L. Transformation of halogenated aliphatic compounds. Environ. Sci. Technol. 21, 722–736 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. US Environmental Protection Agency. Agency for Toxic Substances and Disease Registry, ToxFAQs for chlorinated ethenes; http://www.atsdr.cdc.gov/tfacts70.html (1996).

  6. Coleman, N. V., Mattes, T. E., Gossett, J. M. & Spain, J. C. Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl. Environ. Microbiol. 68, 6162–6171 (2002)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Coleman, N. V., Mattes, T. E., Gossett, J. M. & Spain, J. C. Biodegradation of cis-dichloroethene as the sole carbon source by a β-Proteobacterium. Appl. Environ. Microbiol. 68, 2726–2730 (2002)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Holliger, C., Wohlfarth, G. & Diekert, G. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22, 383–398 (1998)

    Article  CAS  Google Scholar 

  9. Löffler, F. E., Cole, J. R., Ritalahti, K. M. & Tiedje, J. M. in Dehalogenation: Microbial Processes and Environmental Applications (eds Häggblom, M. M & Bossert, I. D.) 53–87 (Kluwer Academic, New York, 2003)

    Google Scholar 

  10. Maymó-Gatell, X., Chien, Y.-T., Gossett, J. M. & Zinder, S. H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276, 1568–1571 (1997)

    Article  PubMed  Google Scholar 

  11. He, J. et al. Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ. Sci. Technol. 36, 3945–3952 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. He, J., Ritalahti, K. M., Aiello, M. R. & Löffler, F. E. Complete detoxification of vinyl chloride (VC) by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides population. Appl. Environ. Microbiol. 69, 996–1003 (2003)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Adrian, L., Szewzyk, U., Wecke, J. & Görisch, H. Bacterial dehalorespiration with chlorinated benzenes. Nature 408, 580–583 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Hendrickson, E. R. et al. Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl. Environ. Microbiol. 68, 485–495 (2002)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cupples, A. M., Spormann, A. M. & McCarty, P. L. Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl. Environ. Microbiol. 69, 953–959 (2003)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Duhamel, M. et al. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res. 36, 4193–4202 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Gribble, G. W. in Chlorinated Compounds in the Biosphere, Natural Production (ed. Meyers, R. A.) 972–1035 (Wiley, New York, 1998)

    Google Scholar 

  18. Keppler, F., Borchers, R., Pracht, J., Rheinberger, S. & Scholer, H. F. Natural formation of vinyl chloride in the terrestrial environment. Environ. Sci. Technol. 36, 2479–2483 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Lendvay, J. M. et al. Bioreactive barriers: bioaugmentation and biostimulation for chlorinated solvent remediation. Environ. Sci. Technol. 37, 1422–1431 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Löffler, F. E., Ritalahti, K. M. & Tiedje, J. M. Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens. Appl. Environ. Microbiol. 63, 4982–4985 (1997)

    PubMed  PubMed Central  Google Scholar 

  21. Löffler, F. E., Tiedje, J. M. & Sanford, R. A. Fraction of electrons consumed in electron acceptor reduction and hydrogen threshold as indicators of halorespiratory physiology. Appl. Environ. Microbiol. 65, 4049–4056 (1999)

    PubMed  PubMed Central  Google Scholar 

  22. Gerhardt, P. (ed.) Manual of Methods for General Bacteriology (American Society for Microbiology, Washington DC, 1981)

  23. Sung, Y. et al. Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl. Environ. Microbiol. 69, 2964–2974 (2003)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Löffler, F. E., Sun, Q., Li, J. & Tiedje, J. M. 16S rRNA gene-based detection of tetrachloroethene (PCE)-dechlorinating Desulfuromonas and Dehalococcoides species. Appl. Environ. Microbiol. 66, 1369–1374 (2000)

    Article  PubMed Central  PubMed  Google Scholar 

  25. Bunge, M. et al. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421, 357–360 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Electron micrographs were obtained by R. P. Apkarian at the Integrated Microscopy and Microanalytical Facility at Emory University, Atlanta, Georgia. This work was supported by the Strategic Environmental Research and Development Program, and by a National Science Foundation CAREER award to F.E.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Löffler.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Ritalahti, K., Yang, KL. et al. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424, 62–65 (2003). https://doi.org/10.1038/nature01717

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01717

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing