Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The ‘zero charge’ partitioning behaviour of noble gases during mantle melting

Abstract

Noble-gas geochemistry is an important tool for understanding planetary processes from accretion to mantle dynamics and atmospheric formation1,2,3,4. Central to much of the modelling of such processes is the crystal–melt partitioning of noble gases during mantle melting, magma ascent and near-surface degassing5. Geochemists have traditionally considered the ‘inert’ noble gases to be extremely incompatible elements, with almost 100 per cent extraction efficiency from the solid phase during melting processes. Previously published experimental data on partitioning between crystalline silicates and melts has, however, suggested that noble gases approach compatible behaviour, and a significant proportion should therefore remain in the mantle during melt extraction5,6,7,8. Here we present experimental data to show that noble gases are more incompatible than previously demonstrated, but not necessarily to the extent assumed or required by geochemical models. Independent atomistic computer simulations indicate that noble gases can be considered as species of ‘zero charge’ incorporated at crystal lattice sites. Together with the lattice strain model9,10, this provides a theoretical framework with which to model noble-gas geochemistry as a function of residual mantle mineralogy.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental cpx–melt partition coefficients for noble gases.
Figure 2: Calculated solution energies for noble gases in interstitial positions or lattice sites in jadeite (see Methods).
Figure 3: Computational and experimentally determined Onuma-type30 diagrams for cpx partitioning.
Figure 4: Comparison of lattice strain model parameters.

References

  1. Allègre, C. J., Staudacher, T. & Sarda, P. Rare gas systematics: Formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett. 81, 127–150 (1987)

    ADS  Article  Google Scholar 

  2. Allègre, C. J., Hofmann, A. & O'Nions, K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996)

    ADS  Article  Google Scholar 

  3. Harper, L. C. & Jacobsen, S. B. Noble gases and Earth's accretion. Science 273, 1814–1818 (1996)

    ADS  CAS  Article  Google Scholar 

  4. Turner, G. The outgassing history of the Earth's atmosphere. J. Geol. Soc. Lond. 146, 147–154 (1989)

    Article  Google Scholar 

  5. Broadhurst, C. L., Drake, M. J., Hagee, B. E. & Bernatowicz, T. J. Solubility and partitioning of Ar in anorthite, diopside, forsterite, spinel, and synthetic basaltic liquids. Geochim. Cosmochim. Acta 54, 299–309 (1990)

    ADS  CAS  Article  Google Scholar 

  6. Hiyagon, H. & Ozima, M. Partition of noble gases between olivine and basalt melt. Geochim. Cosmochim. Acta 50, 2045–2057 (1986)

    ADS  CAS  Article  Google Scholar 

  7. Broadhurst, C. L., Drake, M. J., Hagee, B. E. & Bernatowicz, T. J. Solubility and partitioning of Ne, Ar, Kr, and Xe in minerals and synthetic basalt melts. Geochim. Cosmochim. Acta 56, 709–723 (1992)

    ADS  CAS  Article  Google Scholar 

  8. Shibata, T., Takahashi, E. & Ozima, M. in Noble Gas Geochemistry and Cosmochemistry (ed. Matsuda, J.-I.)) 343–354 (Terra Science, Tokyo, 1994)

    Google Scholar 

  9. Blundy, J. D. & Wood, B. J. Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372, 452–454 (1994)

    ADS  CAS  Article  Google Scholar 

  10. Wood, B. J. & Blundy, J. D. The effect of cation charge on crystal-melt partitioning of trace elements. Earth Planet. Sci. Lett. 188, 59–71 (2001)

    ADS  CAS  Article  Google Scholar 

  11. Van Keken, P. F. & Ballentine, C. J. Dynamical models of mantle volatile evolution and the role of phase transitions and temperature-dependent rheology. J. Geophys. Res. 104, 7137–7151 (1999)

    ADS  Article  Google Scholar 

  12. Van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997)

    ADS  CAS  Article  Google Scholar 

  13. O'Nions, R. K. & Oxburgh, E. R. Heat and helium in the Earth. Nature 306, 429–431 (1983)

    ADS  CAS  Article  Google Scholar 

  14. Ozima, M. & Igarashi, G. T. The primordial noble gases in the Earth: A key constraint on Earth evolution models. Earth Planet. Sci. Lett. 176, 219–232 (2000)

    ADS  CAS  Article  Google Scholar 

  15. Anderson, D. L. A statistical test of the two reservoir model for helium. Earth Planet. Sci. Lett. 193, 77–82 (2001)

    ADS  CAS  Article  Google Scholar 

  16. Marty, B. & Lussiez, P. Constraints on rare gas partition coefficients from analysis of olivine-glass from a picritic mid-ocean ridge basalt. Chem. Geol. 106, 1–7 (1993)

    ADS  CAS  Article  Google Scholar 

  17. Valbracht, P. J., Honda, M., Staudigel, H., McDougall, I. & Trost, A. P. in Noble Gas Geochemistry and Cosmochemistry (ed. Matsuda, J.-I.)) 373–381 (Terra Science, Tokyo, 1994)

    Google Scholar 

  18. Brooker, R. A., Wartho, J.-A., Carroll, M. R., Kelley, S. P. & Draper, D. S. Preliminary UVLAMP determinations of argon partition coefficients for olivine and clinopyroxene grown from silicate melts. Chem. Geol. 147, 185–200 (1998)

    ADS  CAS  Article  Google Scholar 

  19. Chamorro, E. M. et al. Ar and K partitioning between clinopyroxene and silicate melt to 8 GPa. Geochim. Cosmochim. Acta 66, 507–519 (2002)

    ADS  CAS  Article  Google Scholar 

  20. Hiyagon, H. Constraints on rare gas partition coefficients from analysis of olivine-glass from a picritic mid-ocean ridge basalt—Comments. Chem. Geol. 112, 119–122 (1994)

    ADS  CAS  Article  Google Scholar 

  21. Allan, N. L., Blundy, J. D., Purton, J. A., Lavrentiev, M. Y. & Wood, B. J. in EMU Notes in Mineralogy (ed. Geiger, C. A.)) Vol. 3 251–302 (Eötvös Univ. Press, Budapest, 2001)

    Google Scholar 

  22. Brice, J. C. Some thermodynamic aspects of the growth of strained crystals. J. Crystal Growth 28, 249–253 (1975)

    ADS  CAS  Article  Google Scholar 

  23. Beattie, P. The generation of uranium series disequilibrium by partial melting of spinel peridotite: Constraints from partitioning studies. Earth Planet. Sci. Lett. 117, 379–391 (1993)

    ADS  CAS  Article  Google Scholar 

  24. Gale, J. D. GULP: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629–637 (1997)

    CAS  Article  Google Scholar 

  25. Watanabe, K., Austin, N. & Stapleton, M. R. Investigation of the air separation properties of zeolite types A, X and Y by Monte Carlo simulation. Mol. Simulat. 15, 197–221 (1995)

    CAS  Article  Google Scholar 

  26. Macedonia, M. D., Moore, D. D. & Maginn, E. J. Adsorption studies of methane, ethane, and argon in zeolite mordenite: Molecular simulations and experiments. Langmuir 16, 3823–3834 (2000)

    CAS  Article  Google Scholar 

  27. Frenkel, D. & Smit, B. Understanding Molecular Simulation (Academic, San Diego, 1996)

    MATH  Google Scholar 

  28. Pellenq, R. J. M. & Nicholson, D. Grand ensemble Monte Carlo simulation of simple molecules adsorbed in silicalite-zeolite. Langmuir 11, 1626–1635 (1995)

    CAS  Article  Google Scholar 

  29. Zhang, Y. & Xu, Z. Atomic radii of noble gas elements in condensed phases. Am. Mineral. 80, 670–675 (1995)

    ADS  CAS  Article  Google Scholar 

  30. Onuma, N., Higuchi, H., Wakita, H. & Nagasawa, H. Trace element partition between two pyroxenes and the host lava. Earth Planet. Sci. Lett. 5, 47–51 (1968)

    ADS  CAS  Article  Google Scholar 

  31. Shannon, R. D. Revised effective radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Craven and R. Hinton for analytical assistance with the Edinburgh ion-probe; we also thank M. Carroll for originally inspiring the idea of a ‘flat’ parabola, and J. Jones for comments. This work was supported by the NERC, and by research fellowships from the Royal Society, the European Commission and the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Brooker.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brooker, R., Du, Z., Blundy, J. et al. The ‘zero charge’ partitioning behaviour of noble gases during mantle melting. Nature 423, 738–741 (2003). https://doi.org/10.1038/nature01708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01708

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing