Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA

Abstract

High mutation frequency during reverse transcription has a principal role in the genetic variation of primate lentiviral populations. It is the main driving force for the generation of drug resistance and the escape from immune surveillance. G to A hypermutation is one of the characteristics of primate lentiviruses, as well as other retroviruses, during replication in vivo and in cell culture1,2,3,4,5,6. The molecular mechanisms of this process, however, remain to be clarified. Here, we demonstrate that CEM15 (also known as apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G; APOBEC3G)7,8, an endogenous inhibitor of human immunodeficiency virus type 1 (HIV-1) replication, is a cytidine deaminase and is able to induce G to A hypermutation in newly synthesized viral DNA. This effect can be counteracted by the HIV-1 virion infectivity factor (Vif). It seems that this viral DNA mutator is a viral defence mechanism in host cells that may induce either lethal hypermutation or instability of the incoming nascent viral reverse transcripts, which could account for the Vif-defective phenotype. Importantly, the accumulation of CEM15-mediated non-lethal hypermutation in the replicating viral genome could potently contribute to the genetic variation of primate lentiviral populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: G to A hypermutation in viral DNA of Δvif viruses from non-permissive cells or semi-permissive cells.
Figure 2: G to A hypermutation in newly synthesized DNA of viruses generated from cells containing CEM15.
Figure 3: CEM15 has cytidine deaminase activity in vitro.
Figure 4: CEM15 without cytidine deaminase activity can neither inhibit the infectivity nor induce hypermutation in the newly synthesized DNA of Δvif viruses. pNL4-3 or pNL4-3Δvif were transfected into 293T cells with CEM15 or CEM15 mutants.

Similar content being viewed by others

References

  1. Pathak, V. K. & Temin, H. M. Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc. Natl Acad. Sci. USA 87, 6019–6023 (1990)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, Y. et al. Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes. J. Virol. 65, 3973–3985 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Vartanian, J. P., Meyerhans, A., Asjo, B. & Wain-Hobson, S. Selection, recombination, and G → A hypermutation of human immunodeficiency virus type 1 genomes. J. Virol. 65, 1779–1788 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vartanian, J. P., Meyerhans, A., Sala, M. & Wain-Hobson, S. G → A hypermutation of the human immunodeficiency virus type 1 genome: evidence for dCTP pool imbalance during reverse transcription. Proc. Natl Acad. Sci. USA 91, 3092–3096 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fitzgibbon, J. E., Mazar, S. & Dubin, D. T. A new type of G → A hypermutation affecting human immunodeficiency virus. AIDS Res. Hum. Retroviruses 9, 833–838 (1993)

    Article  CAS  PubMed  Google Scholar 

  6. Vartanian, J. P., Henry, M. & Wain-Hobson, S. Sustained G → A hypermutation during reverse transcription of an entire human immunodeficiency virus type 1 strain Vau group O genome. J. Gen. Virol. 83, 801–805 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. Strebel, K. et al. The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 328, 728–730 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Fisher, A. G. et al. The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science 237, 888–893 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Gabuzda, D. H. et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4 + T lymphocytes. J. Virol. 66, 6489–6495 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sova, P. & Volsky, D. J. Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. J. Virol. 67, 6322–6326 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. von Schwedler, U., Song, J., Aiken, C. & Trono, D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J. Virol. 67, 4945–4955 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Simon, J. H. & Malim, M. H. The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J. Virol. 70, 5297–5305 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, H., Pomerantz, R. J., Dornadula, G. & Sun, Y. Human immunodeficiency virus type 1 Vif protein is an integral component of an mRNP complex of viral RNA and could be involved in the viral RNA folding and packaging process. J. Virol. 74, 8252–8261 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dettenhofer, M., Cen, S., Carlson, B. A., Kleiman, L. & Yu, X. F. Association of human immunodeficiency virus type 1 Vif with RNA and its role in reverse transcription. J. Virol. 74, 8938–8945 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khan, M. A. et al. Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. J. Virol. 75, 7252–7265 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harris, R. S., Petersen-Mahrt, S. K. & Neuberger, M. S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Dornadula, G., Yang, S., Pomerantz, R. J. & Zhang, H. Partial rescue of the vif-negative phenotype of mutant human immunodeficiency virus type 1 strains from nonpermissive cells by intravirion reverse transcription. J. Virol. 74, 2594–2602 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Janini, M., Rogers, M., Birx, D. R. & McCutchan, F. E. Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4(+ ) T cells. J. Virol. 75, 7973–7986 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kao, S. et al. Human immunodeficiency virus type 1 Vif is efficiently packaged into virions during productive but not chronic infection. J. Virol. 77, 1131–1140 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chester, A., Scott, J., Anant, S. & Navaratnam, N. RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. Biochim. Biophys. Acta 1494, 1–13 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. Mehta, A., Banerjee, S. & Driscoll, D. M. Apobec-1 interacts with a 65-kDa complementing protein to edit apolipoprotein-B mRNA in vitro. J. Biol. Chem. 271, 28294–28299 (1996)

    Article  CAS  PubMed  Google Scholar 

  25. Martinez, M. A., Vartanian, J. P. & Wain-Hobson, S. Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc. Natl Acad. Sci. USA 91, 11787–11791 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vartanian, J. P. et al. HIV genetic variation is directed and restricted by DNA precursor availability. J. Mol. Biol. 270, 139–151 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. Cattaneo, R. et al. Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55, 255–265 (1988)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  28. Samuel, C. E. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, H., Dornadula, G. & Pomerantz, R. J. Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenvironments: an important stage for viral infection of nondividing cells. J. Virol. 70, 2809–2824 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. MacGinnitie, A. J., Anant, S. & Davidson, N. O. Mutagenesis of apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, reveals distinct domains that mediate cytosine nucleoside deaminase, RNA binding, and RNA editing activity. J. Biol. Chem. 270, 14768–14775 (1995)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the National Institute of Health (H.Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Yang, B., Pomerantz, R. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003). https://doi.org/10.1038/nature01707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01707

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing