Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle

Abstract

Komatiites are ultramafic volcanic rocks containing more than 18 per cent MgO (ref. 1) that erupted mainly in the Archaean era (more than 2.5 gigayears ago). Although such compositions occur in later periods of Earth history (for example, the Cretaceous komatiites of Gorgona Island2), the more recent examples tend to have lower MgO content than their Archaean equivalents. Komatiites are also characterized by their low incompatible-element content, which is most consistent with their generation by high degrees of partial melting (30–50 per cent3). Current models for komatiite genesis include the melting of rock at great depth in plumes of hot, diapirically rising mantle4 or the melting of relatively shallow mantle rocks at less extreme, but still high, temperatures caused by fluxing with water5. Here we report a suite of ultramafic lava flows from the Commondale greenstone belt, in the southern part of the Kaapvaal Craton, which represents a previously unrecognized type of komatiite with exceptionally high forsterite content of its igneous olivines, low TiO2/Al2O3 ratio, high silica content, extreme depletion in rare-earth elements and low Re/Os ratio. We suggest a model for their formation in which a garnet-enriched residue left by earlier cratonic volcanism was melted by hydration from a subducting slab.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation of SiO2 and MgO for Commondale liquid and olivine–orthopyroxene cumulates and for other komatiites.
Figure 2: Chondrite normalized rare-earth patterns for liquid and olivine cumulate compositions for Commondale komatiites.
Figure 3: 187Re/188Os versus 187Os/188Os for the Commondale komatiites.
Figure 4: Projections of Commondale liquid compositions and olivine accumulates into two sytems.

Similar content being viewed by others

References

  1. Kerr, A. C. & Arndt, N. T. A note on the IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 42, 2169–2171 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Révillon, S., Arndt, N. T., Chauvel, C. & Hallot, E. Geochemical study of ultramafic volcanic and plutonic rocks from Gorgona Island, Colombia: plumbing system of an oceanic plateau. J. Petrol. 41, 1127–1153 (2000)

    Article  ADS  Google Scholar 

  3. Sun, S.-S. & Nesbitt, R. W. Petrogenesis of Archean ultrabasic and basic volcanics: evidence from the rare earth elements. Contrib. Mineral. Petrol. 65, 301–325 (1978)

    Article  ADS  CAS  Google Scholar 

  4. Campbell, I. H., Griffiths, R. W. & Hill, R. I. Melting in an Archaean mantle plume: heads it's basalts, tails it's komatiites. Nature 339, 697–699 (1989)

    Article  ADS  CAS  Google Scholar 

  5. Parman, S. W., Dann, J. C., Grove, T. L. & de Wit, M. J. Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton greenstone belt, South Africa. Earth Planet. Sci. Lett. 150, 303–323 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Wilson, A. H. & Carlson, R. W. A Sm-Nd and Pb-Pb isotopic study of Archaean greenstone belts in the southern Kaapvaal Craton, South Africa. Earth Planet. Sci. Lett. 96, 89–105 (1989)

    Article  ADS  CAS  Google Scholar 

  7. Meisel, T., Walker, R. J. & Morgan, J. W. The osmium isotopic composition of the Earth's primitive upper mantle. Nature 383, 517–520 (1998)

    Article  ADS  Google Scholar 

  8. Morgan, J. W. Osmium isotopic constraints on Earth's late accretionary history. Nature 317, 703–705 (1985)

    Article  ADS  CAS  Google Scholar 

  9. Morgan, J. W. Ultramafic xenoliths: Clues to the Earth's late accretionary history. J. Geophys. Res. 91, 12375–12387 (1986)

    Article  ADS  Google Scholar 

  10. Shirey, S. B. & Walker, R. J. The Re-Os isotopic system in cosmochemistry and igneous geochemistry. Annu. Rev. Earth Planet. Sci. 26, 425–500 (1998)

    Article  ADS  Google Scholar 

  11. Crawford, A. J., Falloon, T. J. & Green, D. H. in Boninites and Related Rocks (ed. Crawford, A. J.) 2–44 (Unwin and Hyman, London, 1989)

    Google Scholar 

  12. Herzberg, C. & O'Hara, M. J. Plume-associated ultramafic magmas of Phererozoic age. J. Petrol. 43, 1857–1883 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Campbell, I. H. & Griffiths, R. W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990)

    Article  ADS  CAS  Google Scholar 

  15. Kawamoto, T. & Holloway, J. R. Melting temperature and partial melt chemistry of H2O saturated mantle peridotite to 11 gigapascals. Science 276, 240–243 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. Kushiro, I. Effect of water on the composition of magmas formed at high pressures. J. Petrol. 13, 311–334 (1972)

    Article  ADS  CAS  Google Scholar 

  17. de Wit, M. J. On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambr. Res. 91, 181–226 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Zegers, T. E., White, S. H., de Keijzer, M. & Dirks, P. Extensional structures during the deposition of the 3460 Ma Warrawoona Group in the eastern Pilbara Craton, Western Australia. Precambr. Res. 80, 89–105 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Smith, H. S. & Erlank, A. J. in Komatiites (eds Arndt, N. T. & Nisbet, E. G.) 347–398 (George Allen and Unwin, London, 1982)

    Google Scholar 

  21. Fan, J. & Kerrich, R. Geochemical characteristics of Al-depleted and Al-undepleted komatiites and HREE-enriched low-Ti tholeiites, western Abitibi greenstone belt: A heterogeneous mantle plume-convergent margin environment. Geochim. Cosmochim. Acta 61, 4723–4744 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Xie, Q. & Kerrich, R. Silicate-perovskite and marjorite signature komatiites from the Archean Abitibi Greenstone Belt: implications for early mantle differentiation and stratification. J. Geophys. Res. 99, 15799–15812 (1994)

    Article  ADS  CAS  Google Scholar 

  23. Carlson, R. W. et al. in The J.B. Dawson Volume—Proc. 7th Int. Kimberlite Conf (eds Gurney, J. J., Gurney, J. L., Pascoe, M. D. & Richardson, S. H.) 99–108 (Red Roof Design, Cape Town, 1999)

    Google Scholar 

  24. Irvine, G., Pearson, D. G. & Carlson, R. W. Lithospheric mantle evolution of the Kaapvaal Craton: a Re-Os isotopic study of peridotite xenoliths from Lesotho kimberlites. Geophys. Res. Lett. 28, 2505–2508 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Bennett, V. C., Nutman, A. P. & Esat, T. M. Constraints on mantle evolution from 187Os/188Os isotopic compositions of Archean ultramafic rocks from southern West Greenland (3.8 Ga) and Western Australia (3.46 Ga). Geochim. Cosmochim. Acta 66, 2615–2630 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Nagler, T. F., Kramers, J. D., Kamber, B. S., Frei, R. & Prendergast, M. D. Growth of subcontinental lithospheric mantle beneath Zimbabwes started at or before 3.8 Ga: Re-Os study on chromites. Geology 25, 983–986 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Kinzler, R. J. & Grove, T. L. Crystallization and differentiation of Archean komatiite lavas from northeast Ontario: phase equilibrium and kinetic studies. Am. Mineral. 70, 40–51 (1985)

    CAS  Google Scholar 

  28. Taylor, R. N. et al. Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. J. Petrol. 35, 577–617 (1994)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Support for this study comes from a NSF EAR Continental Dynamics grant, the National Research Foundation (South Africa) and the University of Natal Research Fund. C. Herzberg and M. Walter provided comments that improved this paper. We also thank N. Arndt, M. Cheadle, J. Boyd, S. Parman, M. de Wit and B. Mysen for discussions on these komatiites, but the views expressed in this paper are our own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Wilson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, A., Shirey, S. & Carlson, R. Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle. Nature 423, 858–861 (2003). https://doi.org/10.1038/nature01701

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01701

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing