Abstract
Chondrules and calcium-aluminium-rich inclusions (CAIs) are preserved materials from the early history of the Solar System, where they resulted from thermal processing of pre-existing solids during various flash heating episodes which lasted for several million years1. CAIs are believed to have formed about two million years before the chondrules2,3,4,5. Here we report the discovery of a chondrule fragment embedded in a CAI. The chondrule's composition is poor in 16O, while the CAI has a 16O-poor melilite (Ca, Mg, Al-Silicate) core surrounded by a 16O-rich igneous mantle. These observations, when combined with the previously reported CAI-bearing chondrules6,7,8,9, strongly suggest that the formation of chondrules and CAIs overlapped in time and space, and that there were large fluctuations in the oxygen isotopic compositions in the solar nebula probably synchronizing astrophysical pulses.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Infiltration metasomatism of the Allende coarse-grained calcium-aluminum-rich inclusions
Progress in Earth and Planetary Science Open Access 04 November 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Wood, J. A. in Chondrules and the Protoplanetary Disk (eds Hewins, R. H., Jones, R. H. & Scott, E. R. D.) 55–69 (Cambridge Univ. Press, Cambridge, 1996)
Tatsumoto, M., Unruh, D. M. & Desborough, G. A. U-Th-Pb and Rb-Sr systematics of Allende and U-Th-Pb systematics of Orgueil. Geochim. Cosmochim. Acta 40, 617–634 (1976)
Chen, J. H. & Tilton, G. R. Isotopic lead investigations on the Allende carbonaceous chondrite. Geochim. Cosmochim. Acta 40, 635–643 (1976)
Amelin, Y., Krot, A. N., Hatcheon, I. D. & Ulyanov, A. A. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297, 1678–1683 (2002)
Russell, S. S., Srinivasan, G., Huss, G. R., Wasserburg, G. J. & MacPheron, G. J. Evidence for widespread 26Al in the solar nebula and constraints for nebula time scales. Science 273, 757–762 (1996)
Bischoff, A. & Keil, K. Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochim. Cosmochim. Acta 48, 693–709 (1984)
Srinivasan, G. & Bischoff, A. Magnesium-aluminum study of hibonites within a chondrule-like object from Sharps (H3). Meteorit. Planet. Sci. 32, A148 (1998)
Krot, A. N. et al. Mineralogical, aluminum-magnesium, and oxygen-isotopic studies of the relic calcium-aluminum-rich inclusions in chondrules. Meteorit. Planet. Sci. 34, A68–A69 (1999)
Maruyama, S., Yurimoto, H. & Sueno, S. Oxygen isotope evidence regarding the formation of spinel-bearing chondrules. Earth Planet. Sci. Lett. 169, 165–171 (1999)
MacPherson, G. J., Wark, D. A. & Armstrong, J. T. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 746–807 (Univ. Arizona Press, Tucson, 1988)
Noguchi, T. Texture and chemical composition of pyroxenes in chondrules in carbonaceous and unequilibrated ordinary chondrites. Proc. NIPR Symp. Antarct. Meteorites 2, 169–199 (1989)
Jones, R. H., Saxton, J. M., Lyon, I. C. & Turner, G. Oxygen isotopes in chondrule olivine and isolated olivine grains from the CO3 chondrite, ALHA77307. Meteorit. Planet. Sci. 35, 849–857 (2000)
Wasson, J. T., Rubin, A. E. & Yurimoto, H. CO chondrule evidence for a drift in the nebular oxygen-isotopic composition. [abstract]. Meteorit. Planet. Sci. 35, A166–A167 (2000)
Stolper, E. Crystallization sequences of Ca-Al-rich inclusions from Allende: An experimental study. Geochim. Cosmochim. Acta 46, 2159–2180 (1982)
Itoh, S., Kojima, H., Yurimoto, H. . Lunar Planet. Sci. XXXI, 1323 (2000) [CD-ROM]
Stolper, E. & Paque, J. M. Crystallization sequences of Ca-Al-rich inclusions from Allende: The effects of cooling rate and maximum temperature. Geochim. Cosmochim. Acta 50, 1785–1806 (1986)
Yurimoto, H., Morioka, M. & Nagasawa, H. Diffusion in single-crystals of melilite: I. Oxygen. Geochim. Cosmochim. Acta 53, 2387–2394 (1989)
Lasaga, A. C. in Kinetics and Equilibrium in Mineral Reactions (ed. Saxena, S. K.)) 81–114 (Springer, New York, 1983)
Wasson, J. T., Yurimoto, H. & Russell, S. S. 16O-rich melilite in CO3.0 chondrites; possible formation of common, 16O-poor melilite by aqueous alteration. Geochim. Cosmochim. Acta 65, 4539–4549 (2001)
Kojima, T., Yada, S. & Tomeoka, K. Ca-Al-rich inclusions in three Antarctic CO3 chondrites, Yamato-81020, Yamato-82050 and Yamato-790992: Record of low-temperature alteration. Proc. NIPR Symp. Antarct. Meteorites 8, 79–96 (1995)
Itoh, S., Kojima, H. & Yurimoto, H. Petrography and oxygen isotopic compositions in refractory inclusions from CO chondrites. Geochim. Cosmochim. Acta (in the press)
Shu, F. H., Shang, H., Glassgold, A. E. & Lee, T X-rays and fluctuating X-winds from protostars. Science 277, 1475–1749 (1997)
Shu, F. H., Shang, H., Gounelle, M., Glassgold, A. E. & Lee, T. The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys. J. 548, 1029–1050 (2001)
Gounelle, M. et al. Extinct radioactivities and protosolar cosmic rays: Self-shielding and light elements. Astrophys. J. 548, 1051–1070 (2001)
Yurimoto, H., Asada, Y. & Hirai, K. Oxygen isotopic composition of fine-grained CAIs and genetic relation to coarse-grained CAIs. Meteorit. Planet. Sci. 36, A230 (2001)
Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet Sci. 21, 115–149 (1993)
Krot, A. N., McKeegan, K. D., Leshin, L. A., MacPherson, G. J. & Scott, E. R. D. Existence of an 16O-rich gaseous reservoir in the solar nebula. Science 295, 1051–1054 (2002)
Krot, A. N. et al. Refractory calcium-aluminum-rich inclusions and aluminum-diopside-rich chondrules in the metal-rich chondrites Hammadah al Hamra 237 and Queen Alexandra Range 94411. Meteorit. Planet. Sci. 36, 1189–1216 (2001)
Cameron, A. G. W. The first ten million years in the solar nebula. Meteoritics 30, 133–161 (1995)
Yurimoto, H., Ito, M. & Nagasawa, H. Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas. Science 282, 1874–1877 (1998)
Acknowledgements
We thank J. T. Wasson and A. E. Rubin for loaning us the thin section and for discussions. We also thank A. Meibom, A. N. Krot and T. J. Fagan for discussions and for improving the English of this Letter. This work was supported by Monbu-Kagaku-sho grants.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Rights and permissions
About this article
Cite this article
Itoh, S., Yurimoto, H. Contemporaneous formation of chondrules and refractory inclusions in the early Solar System. Nature 423, 728–731 (2003). https://doi.org/10.1038/nature01699
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature01699
This article is cited by
-
Infiltration metasomatism of the Allende coarse-grained calcium-aluminum-rich inclusions
Progress in Earth and Planetary Science (2021)
-
Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions
Nature (2005)
-
Stardust silicates from primitive meteorites
Nature (2004)
-
The clock's second hand
Nature (2004)
-
Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions
Nature (2004)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.