Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1


Far-red light regulates many aspects of seedling development, such as inhibition of hypocotyl elongation and the promotion of greening1, acting in part through phytochrome A (phyA). The RING motif protein COP1 is also important because cop1 mutants exhibit constitutive photomorphogenesis in darkness2,3. COP1 is present in the nucleus in darkness but is gradually relocated to the cytoplasm upon illumination4. Here we show that COP1 functions as an E3 ligase ubiquitinating both itself and the myb transcription activator LAF1, which is required for complete phyA responses5. In transgenic plants, inducible COP1 overexpression leads to a decrease in LAF1 concentrations, but is blocked by the proteasome inhibitor MG132. The coiled-coil domain of SPA1, a negative regulator of phyA signalling6, has no effect on COP1 auto-ubiquitination but facilitates LAF1 ubiquitination at low COP1 concentrations. These results indicate that, in darkness, COP1 functions as a repressor of photomorphogenesis by promoting the ubiquitin-mediated proteolysis of a subset of positive regulators, including LAF1. After the activation of phyA, SPA1 stimulates the E3 activity of residual nuclear COP1 to ubiquitinate LAF1, thereby desensitizing phyA signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of LAF1, COP1 and SPA1.
Figure 2: COP1 self-ubiquitination activity.
Figure 3: Ubiquitination of LAF1 by COP1.
Figure 4: SPA1cc modulates COP1 E3 activity.

Similar content being viewed by others


  1. Neff, M. M., Fankhauser, C. & Chory, J. Light: an indicator of time and place. Genes Dev. 14, 257–271 (2000)

    CAS  PubMed  Google Scholar 

  2. Deng, X. W., Caspar, T. & Quail, P. H. cop1: a regulatory locus involved in light controlled development and gene expression in Arabidopsis. Genes Dev. 5, 1172–1182 (1991)

    Article  CAS  Google Scholar 

  3. von Arnim, A. G. & Deng, X. W. Ring finger motif of Arabidopsis thaliana COP1 defines a new class of zinc-binding domain. J. Biol. Chem. 268, 19626–19631 (1993)

    CAS  PubMed  Google Scholar 

  4. von Arnim, A. G., Osterlund, M. T., Kwok, S. F. & Deng, X. W. Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis. Plant Physiol. 114, 779–788 (1997)

    Article  CAS  Google Scholar 

  5. Ballesteros, M. L. et al. LAF1, a MYB transcription activator for phytochrome A signaling. Genes Dev. 15, 2613–2625 (2001)

    Article  CAS  Google Scholar 

  6. Hoecker, U., Xu, Y. & Quail, P. H. SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell 10, 19–33 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma, L. et al. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13, 2589–2607 (2001)

    Article  CAS  Google Scholar 

  8. Quail, P. H. et al. Phytochromes: photosensory perception and signal transduction. Science 268, 675–680 (1995)

    Article  ADS  CAS  Google Scholar 

  9. Quail, P. H. Phytochrome photosensory signalling networks. Nature Rev. Mol. Cell Biol. 3, 85–93 (2002)

    Article  CAS  Google Scholar 

  10. Nagy, F. & Schafer, E. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol. 53, 329–355 (2002)

    Article  CAS  Google Scholar 

  11. Hardtke, C. S. & Deng, X. W. The cell biology of the COP/DET/FUS proteins. Regulating proteolysis in photomorphogenesis and beyond? Plant Physiol. 124, 1548–1557 (2000)

    Article  CAS  Google Scholar 

  12. Ang, L. H. et al. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1, 213–222 (1998)

    Article  CAS  Google Scholar 

  13. Hoecker, U. & Quail, P. H. The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. J. Biol. Chem. 276, 38173–38178 (2001)

    CAS  PubMed  Google Scholar 

  14. Stacey, M. G. & von Arnim, A. G. A novel motif mediates the targeting of the Arabidopsis COP1 protein to subnuclear foci. J. Biol. Chem. 274, 27231–27236 (1999)

    Article  CAS  Google Scholar 

  15. Torii, K. U. et al. The RING finger motif of photomorphogenic repressor COP1 specifically interacts with the RING-H2 motif of a novel Arabidopsis protein. J. Biol. Chem. 274, 27674–27681 (1999)

    Article  CAS  Google Scholar 

  16. Osterlund, M. T., Hardtke, C. S., Wei, N. & Deng, X. W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462–466 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Hardtke, C. S., Okamoto, H., Stoop-Myer, C. & Deng, X. W. Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J. 30, 385–394 (2002)

    Article  CAS  Google Scholar 

  18. Torii, K. U., McNellis, T. W. & Deng, X. W. Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development. EMBO J. 17, 5577–5587 (1998)

    Article  CAS  Google Scholar 

  19. Xie, Q. et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419, 167–170 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Zuo, J., Niu, Q. W. & Chua, N. H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273 (2000)

    Article  CAS  Google Scholar 

  21. Dieterle, M., Zhou, Y. C., Schafer, E., Funk, M. & Kretsch, T. EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev. 15, 939–944 (2001)

    Article  CAS  Google Scholar 

  22. Hoecker, U., Tepperman, J. M. & Quail, P. H. SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284, 496–499 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Holley, C. L., Olson, M. R., Colon-Ramos, D. A. & Kornbluth, S. Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nature Cell Biol. 4, 439–444 (2002)

    Article  CAS  Google Scholar 

  24. Ryoo, H. D., Bergmann, A., Gonen, H., Ciechanover, A. & Steller, H. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nature Cell Biol. 4, 432–438 (2002)

    Article  CAS  Google Scholar 

  25. Yoo, S. J. et al. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nature Cell Biol. 4, 416–424 (2002)

    Article  CAS  Google Scholar 

  26. Wilson, R. et al. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nature Cell Biol. 4, 445–450 (2002)

    Article  CAS  Google Scholar 

  27. Lafarga, M. et al. Clastosome: A subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. Mol. Biol. Cell 13, 2771–2782 (2002)

    Article  CAS  Google Scholar 

  28. Xie, Q., Frugis, G., Colgan, D. & Chua, N. H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 3024–3036 (2000)

    Article  CAS  Google Scholar 

  29. Kost, B., Spielhofer, P. & Chua, N. H. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 16, 393–401 (1998)

    Article  CAS  Google Scholar 

  30. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998)

    Article  CAS  Google Scholar 

Download references


We thank X.-W. Deng for COP1 cDNA, and P. Hare for discussions. This work was supported by an NIH grant to N.-H.C. J.-Y.Y. is a graduate student on leave from Chung Hsing University, Taiwan.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nam-Hai Chua.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, H., Yang, JY., Ishikawa, M. et al. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423, 995–999 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing