Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen

A Corrigendum to this article was published on 04 September 2003

Abstract

The oncoprotein large tumour antigen (LTag) is encoded by the DNA tumour virus simian virus 40. LTag transforms cells and induces tumours in animals by altering the functions of tumour suppressors (including pRB and p53) and other key cellular proteins. LTag is also a molecular machine that distorts/melts the replication origin of the viral genome and unwinds duplex DNA. LTag therefore seems to be a functional homologue of the eukaryotic minichromosome maintenance (MCM) complex. Here we present the X-ray structure of a hexameric LTag with DNA helicase activity. The structure identifies the p53-binding surface and reveals the structural basis of hexamerization. The hexamer contains a long, positively charged channel with an unusually large central chamber that binds both single-stranded and double-stranded DNA. The hexamer organizes into two tiers that can potentially rotate relative to each other through connecting α-helices to expand/constrict the channel, producing an ‘iris’ effect that could be used for distorting or melting the origin and unwinding DNA at the replication fork.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The helicase activity and hexamer structure of LTag251–627.
Figure 4: The p53-binding surface.
Figure 2: Detailed structure of LTag251–627 monomer.
Figure 3: Hexamerization of LTag.
Figure 5: The channel features and DNA-binding activity of LTag hexamer.
Figure 6: Models for origin distortion and melting, and DNA unwinding, by LTag.

Similar content being viewed by others

References

  1. Pipas, J. M. Common and unique features of T antigens encoded by the polyomavirus group. J. Virol. 66, 3979–3985 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Simmons, D. T. SV40 large T antigen functions in DNA replication and transformation. Adv. Virus Res. 55, 75–134 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Stillman, B. Smart machines at the DNA replication fork. Cell 78, 725–728 (1994)

    Article  CAS  PubMed  Google Scholar 

  4. Bullock, P. A. The initiation of simian virus 40 DNA replication in vitro. Crit. Rev. Biochem. Mol. Biol. 32, 503–568 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Mastrangelo, I. A. et al. ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication. Nature 338, 658–662 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Borowiec, J. A. & Hurwitz, J. Localized melting and structural changes in the SV40 origin of replication induced by T-antigen. EMBO J. 7, 3149–3158 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joo, W. S., Kim, H. Y., Purviance, J. D., Sreekumar, K. R. & Bullock, P. A. Assembly of T-antigen double hexamers on the simian virus 40 core origin requires only a subset of the available binding sites. Mol. Cell. Biol. 18, 2677–2687 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dean, F. B. et al. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc. Natl Acad. Sci. USA 84, 16–20 (1987)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wold, M. S., Li, J. J. & Kelly, T. J. Initiation of simian virus 40 DNA replication in vitro: Large-tumor-antigen- and origin-dependent unwinding of the template. Proc. Natl Acad. Sci. USA 84, 3643–3647 (1987)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smelkova, N. V. & Borowiec, J. A. Synthetic DNA replication bubbles bound and unwound with twofold symmetry by a simian virus 40 T-antigen double hexamer. J. Virol. 72, 8676–8681 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsurimoto, T., Melendy, T. & Stillman, B. Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature 346, 534–539 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Tsurimoto, T. & Stillman, B. Replication factors required for SV40 DNA replication in vitro. II. Switching of DNA polymerase α and δ during initiation of leading and lagging strand synthesis. J. Biol. Chem. 266, 1961–1968 (1991)

    CAS  PubMed  Google Scholar 

  13. Wun-Kim, K. & Simmons, D. T. Mapping of helicase and helicase substrate-binding domains on simian virus 40 large T antigen. J. Virol. 64, 2014–2020 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, C., Roy, R. & Simmons, D. T. Role of single-stranded DNA binding activity of T antigen in simian virus 40 DNA replication. J. Virol. 75, 2839–2847 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borowiec, J. A., Dean, F. B., Bullock, P. A. & Hurwitz, J. Binding and unwinding—how T antigen engages the SV40 origin of DNA replication. Cell 60, 181–184 (1990)

    Article  CAS  PubMed  Google Scholar 

  16. Fanning, E. & Knippers, R. Structure and function of simian virus 40 large tumor antigen. Annu. Rev. Biochem. 61, 55–85 (1992)

    Article  CAS  PubMed  Google Scholar 

  17. Koonin, E. V. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 21, 2541–2547 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA + : A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999)

    CAS  PubMed  Google Scholar 

  19. Beachy, T. M., Cole, S. L., Cavender, J. F. & Tevethia, M. J. Regions and activities of simian virus 40 T antigen that cooperate with an activated ras oncogene in transforming primary rat embryo fibroblasts. J. Virol. 76, 3145–3157 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cavender, J. F., Conn, A., Epler, M., Lacko, H. & Tevethia, M. J. Simian virus 40 large T antigen contains two independent activities that cooperate with a ras oncogene to transform rat embryo fibroblasts. J. Virol. 69, 923–934 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Valle, M., Gruss, C., Halmer, L., Carazo, J. M. & Donate, L. E. Large T-antigen double hexamers imaged at the simian virus 40 origin of replication. Mol. Cell. Biol. 20, 34–41 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo, X., Sanford, D. G., Bullock, P. A. & Bachovchin, W. W. Solution structure of the origin DNA-binding domain of SV40 T-antigen. Nature Struct. Biol. 3, 1034–1039 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. Fletcher, R., Bishop, B., Sclafani, R., Ogata, G. & Chen, X. The structure and function of MCM dodecamer from Archaeal M. thermoautotrophicum. Nature Struct. Biol. 10, 160–167 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Edwards, M. C. et al. MCM2–7 complexes bind chromatin in a distributed pattern surrounding ORC in Xenopus egg extracts. J. Biol. Chem. 277, 33049–33059 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Lenzen, C. U., Steinmann, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525–536 (1998)

    Article  CAS  PubMed  Google Scholar 

  26. Sousa, M. C. et al. Crystal and solution structures of an HslUV protease–chaperone complex. Cell 103, 633–643 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. Bochtler, M. et al. The structures of HsIU and the ATP-dependent protease HsIU–HsIV. Nature 403, 800–805 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Putnam, C. D. et al. Structure and mechanism of the RuvB Holliday junction branch migration motor. J. Mol. Biol. 311, 297–310 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Loeber, G., Parsons, R. & Tegtmeyer, P. The zinc finger region of simian virus 40 large T antigen. J. Virol. 63, 94–100 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sawaya, M. R., Guo, S., Tabor, S., Richardson, C. C. & Ellenberger, T. Crystal structure of the helicase domain from the replicative helicase–primase of bacteriophage T7. Cell 99, 167–177 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000)

    Article  CAS  PubMed  Google Scholar 

  32. Scheffzek, K. et al. The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. Farber, J. M., Peden, K. W. & Nathans, D. Trans-dominant defective mutants of simian virus 40 T antigen. J. Virol. 61, 436–445 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Loeber, G., Tevethia, M. J., Schwedes, J. F. & Tegtmeyer, P. Temperature-sensitive mutants identify crucial structural regions of simian virus 40 large T antigen. J. Virol. 63, 4426–4430 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ray, S., Anderson, M. E., Loeber, G., McVey, D. & Tegtmeyer, P. Functional characterization of temperature-sensitive mutants of simian virus 40 large T antigen. J. Virol. 66, 6509–6516 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, J. Y. & Simmons, D. T. The ability of large T antigen to complex with p53 is necessary for the increased life span and partial transformation of human cells by simian virus 40. J. Virol. 65, 6447–6453 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, J. Y. & Simmons, D. T. Stable T–p53 complexes are not required for replication of simian virus 40 in culture or for enhanced phosphorylation of T antigen and p53. J. Virol. 65, 2066–2072 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kierstead, T. D. & Tevethia, M. J. Association of p53 binding and immortalization of primary C57BL/6 mouse embryo fibroblasts by using simian virus 40 T-antigen mutants bearing internal overlapping deletion mutations. J. Virol. 67, 1817–1829 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Peden, K. W., Srinivasan, A., Farber, J. M. & Pipas, J. M. Mutants with changes within or near a hydrophobic region of simian virus 40 large tumor antigen are defective for binding cellular protein p53. Virology 168, 13–21 (1989)

    Article  CAS  PubMed  Google Scholar 

  41. Wu, C., Edgil, D. & Simmons, D. T. The origin DNA-binding and single-stranded DNA-binding domains of simian virus 40 large T antigen are distinct. J. Virol. 72, 10256–10259 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rouiller, I. et al. Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nature Struct. Biol. 9, 950–957 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. Wessel, R., Schweizer, J. & Stahl, H. Simian virus 40 T-antigen DNA helicase is a hexamer which forms a binary complex during bidirectional unwinding from the viral origin of DNA replication. J. Virol. 66, 804–815 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cook, P. R. The organization of replication and transcription. Science 284, 1790–1795 (1999)

    Article  CAS  PubMed  Google Scholar 

  45. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–325 (1997)

    Article  CAS  PubMed  Google Scholar 

  46. Terwilliger, T. C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994)

    Article  Google Scholar 

  48. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  49. Kraulis, P. E. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  50. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L.G. Chen for her assistance in the artwork, R. Garcea and L. Chen for comments on the manuscript, other members of the X. Chen laboratory for help and input, staff at 19id and 14bmc in Argonne National Laboratory and at X25 in Brookhaven National Laboratory for assistance in data collection, and the UCHSC X-ray centre in the Biomolecular Structure Program for support. This work is supported in part by start-up and cancer-centre funds from UCHSC to X.C. and NIH-R01 to X.C., J.A.D. and E.F., and a DOE grant to R.Z. and A.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojiang S. Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Zhao, R., Lilyestrom, W. et al. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423, 512–518 (2003). https://doi.org/10.1038/nature01691

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01691

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing