Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An extragalactic supernebula confined by gravity

Abstract

Little is known about the origins of globular clusters, which contain hundreds of thousands of stars in a volume only a few light years across. Radiation pressure and winds from luminous young stars should disperse the star-forming gas and disrupt the formation of the cluster. Globular clusters in our Galaxy cannot provide answers; they are billions of years old. Here we report the measurement of infrared hydrogen recombination lines from a young, forming super star cluster in the dwarf galaxy NGC5253. The lines arise in gas heated by a cluster of about one million stars, including 4,000–6,000 massive, hot ‘O’ stars1,2. It is so young that it is still enshrouded in gas and dust, hidden from optical view1,3,4,5. The gases within the cluster seem bound by gravity, which may explain why the windy and luminous O stars have not yet blown away those gases. Young clusters in ‘starbursting’ galaxies in the local and distant Universe may also be gravitationally confined and cloaked from view.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infrared–optical colour view of the young SSCs of NGC5253.
Figure 2: Echellogram and slit position for Brackett spectra of the supernebula.
Figure 3: Spectra of Br α and Br γ in NGC5253.

Similar content being viewed by others

References

  1. Turner, J. L., Beck, S. C. & Ho, P. T. P. The radio supernebula in NGC5253. Astrophys. J. 532, L109–L112 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Meier, D. S., Turner, J. L. & Beck, S. C. Molecular gas and star formation in NGC5253 revisited. Astron. J. 124, 877–885 (2002)

    Article  ADS  Google Scholar 

  3. Beck, S. C., Turner, J. L., Ho, P. T. P., Kelly, D. & Lacy, J. H. The central star cluster of the star-forming dwarf galaxy NGC5253. Astrophys. J. 457, 610–615 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Turner, J. L., Ho, P. T. P. & Beck, S. C. The radio properties of NGC5253 and its unusual HII regions. Astron. J. 116, 1212–1220 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Gorjian, V., Turner, J. L. & Beck, S. C. Infrared emission from the radio supernebula in NGC5253: A proto-globular cluster? Astrophys. J. 554, L29–L32 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Caldwell, N. & Phillips, M. M. Star formation in NGC5253. Astrophys. J. 338, 789–803 (1989)

    Article  ADS  Google Scholar 

  7. Gorjian, V. WFPC2 imaging of the starburst galaxy NGC5253. Astron. J. 1120, 1886–1893 (1996)

    Article  ADS  Google Scholar 

  8. Calzetti, D. et al. Dust and recent star formation in the core of NGC5253. Astron. J. 114, 1834–1849 (1997)

    Article  ADS  Google Scholar 

  9. Tremonti, C. A., Calzetti, D., Leitherer, C. & Heckman, T. M. Star formation in the field and clusters of NGC5253. Astrophys. J. 555, 322–337 (2001)

    Article  ADS  CAS  Google Scholar 

  10. McLean, I. S. et al. Performance and results with the NIRSPEC echelle spectrograph on the Keck II Telescope. Proc. SPIE 4008, 1048–1055 (2000)

    Article  ADS  Google Scholar 

  11. Kawara, K., Nishida, M. & Phillips, M. M. Brackett alpha and gamma observations of starburst and Seyfert galaxies. Astrophys. J. 337, 230–235 (1989)

    Article  ADS  CAS  Google Scholar 

  12. Storey, P. J. & Hummer, D. G. Recombination line intensities for hydrogenic atoms. IV. Total recombination coefficients and machine-readable tables for Z = 1 to 8. Mon. Not. R. Astron. Soc. 272, 41–48 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Walsh, J. R. & Roy, J.-R. Optical spectroscopic and abundance mapping of the amorphous galaxy NGC5253. Mon. Not. R. Astron. Soc. 239, 297–324 (1989)

    Article  ADS  CAS  Google Scholar 

  14. Rieke, G. H. & Lebofsky, M. J. The interstellar extinction law for 1 to 13 microns. Astrophys. J. 288, 618–621 (1985)

    Article  ADS  CAS  Google Scholar 

  15. Mohan, N. R., Anantharamaiah, K. R. & Goss, W. M. Very Large Array observations of the H92α line from NGC5253 and Henize 2–10: Ionized gas around super star clusters. Astrophys. J. 557, 659–670 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Martin, C. L. & Kennicutt, R. C. Jr Soft X-ray emission from NGC5253 and the ionized interstellar medium. Astrophys. J. 447, 171–183 (1995)

    Article  ADS  CAS  Google Scholar 

  17. De Pree, C. G., Wilner, D. J., Goss, W. M., Welch, W. J. & McGrath, E. Ultracompact HII regions in W49N at 500 AU scales: Shells, winds, and the water maser source. Astrophys. J. 540, 308–315 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Chu, Y. H. Ring nebulae around massive stars throughout the HR diagram. In IAU Symposium 212 (eds van der Hucht, K. A., Herrero, A. & Esteban, C.) (in the press)

  19. Wood, D. O. S. & Churchwell, E. Massive stars embedded in molecular clouds: Their population and distribution in the Galaxy. Astrophys. J. 340, 265–272 (1989)

    Article  ADS  Google Scholar 

  20. Kunth, D. et al. HST study of Lyman-alpha emission in star-forming galaxies: the effect of neutral gas flows. Astron. Astrophys. 334, 11–20 (1998)

    ADS  CAS  Google Scholar 

  21. Tenorio-Tagle, G., Silich, S. A., Kunth, D., Terlevich, E. & Terlevich, R. The evolution of superbubbles and the detection of Lya in star-forming galaxies. Mon. Not. R. Astron. Soc. 309, 332–342 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Meier, D. L. & Terlevich, R. Extragalactic HII regions in the UV. Implications for primeval galaxies. Astrophys. J. 246, L109–L113 (1981)

    Article  ADS  CAS  Google Scholar 

  23. Hartmann, L., Huchra, J. P. & Geller, M. J. How to find galaxies at high redshift. Astrophys. J. 287, 487–491 (1984)

    Article  ADS  CAS  Google Scholar 

  24. Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M. & Adelberger, K. L. Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts z > 3. Astrophys. J. 462, L17–L21 (1996)

    Article  ADS  Google Scholar 

  25. Walborn, N. R. & Barbá, R. H. in New Views of the Magellanic Clouds (eds Chu, Y.-H., Suntzeff, N., Hesser, J. & Bohlender, D.) 213 (Astronomical Society of the Pacific, San Francisco, 1999)

    Google Scholar 

  26. Mills, B. Y., Turtle, A. J. & Watkinson, A. A radio model of the 30 Doradus region. Mon. Not. R. Astron. Soc. 185, 263–276 (1978)

    Article  ADS  Google Scholar 

  27. Kennicutt, R. C. Jr & Chu, Y.-H. Giant HII regions and the rormation of populous clusters. Astron. J. 95, 720–730 (1988)

    Article  ADS  CAS  Google Scholar 

  28. Melnick, J., Tenorio-Tagle, G. & Terlevich, R. Supersonic gas motion in extragalactic HII regions. Mon. Not. R. Astron. Soc. 302, 677–683 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Moorwood, A. F. M. & Glass, I. S. Infrared emission and star formation in NGC5253. Astron. Astrophys. 115, 84–89 (1982)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Glassman and E. Greisen for assistance with the data and M. Jura for discussions. This research is supported by the US National Science Foundation, the Israel Academy Center for Multi-Wavelength Astronomy, and the Laboratory of Astronomical Imaging at the University of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Turner.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, J., Beck, S., Crosthwaite, L. et al. An extragalactic supernebula confined by gravity. Nature 423, 621–623 (2003). https://doi.org/10.1038/nature01689

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01689

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing