POT1 as a terminal transducer of TRF1 telomere length control


Human telomere maintenance is essential for the protection of chromosome ends, and changes in telomere length have been implicated in ageing and cancer1,2,3,4. Human telomere length is regulated by the TTAGGG-repeat-binding protein TRF1 and its interacting partners tankyrase 1, TIN2 and PINX1 (refs 5–9). As the TRF1 complex binds to the duplex DNA of the telomere, it is unclear how it can affect telomerase, which acts on the single-stranded 3′ telomeric overhang. Here we show that the TRF1 complex interacts with a single-stranded telomeric DNA-binding protein—protection of telomeres 1 (POT1)—and that human POT1 controls telomerase-mediated telomere elongation. The presence of POT1 on telomeres was diminished when the amount of single-stranded DNA was reduced. Furthermore, POT1 binding was regulated by the TRF1 complex in response to telomere length. A mutant form of POT1 lacking the DNA-binding domain abrogated TRF1-mediated control of telomere length, and induced rapid and extensive telomere elongation. We propose that the interaction between the TRF1 complex and POT1 affects the loading of POT1 on the single-stranded telomeric DNA, thus transmitting information about telomere length to the telomere terminus, where telomerase is regulated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Telomeric association of POT1 correlates with single-stranded DNA (ssDNA).
Figure 2: Telomeric association of POT1(ΔOB).
Figure 3: POT1 binds the TRF1 complex and is affected by tankyrase 1.
Figure 4: POT1 regulates telomere length.


  1. 1

    Blackburn, E. H. Telomere states and cell fates. Nature 408, 53–56 (2000)

    ADS  CAS  Article  Google Scholar 

  2. 2

    de Lange, T. Protection of mammalian telomeres. Oncogene 21, 532–540 (2002)

    CAS  Article  Google Scholar 

  3. 3

    Granger, M. P., Wright, W. E. & Shay, J. W. Telomerase in cancer and aging. Crit. Rev. Oncol. Hematol. 41, 29–40 (2002)

    Article  Google Scholar 

  4. 4

    Maser, R. S. & DePinho, R. A. Connecting chromosomes, crisis, and cancer. Science 297, 565–569 (2002)

    ADS  CAS  Article  Google Scholar 

  5. 5

    van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Smogorzewska, A. et al. Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 20, 1659–1668 (2000)

    CAS  Article  Google Scholar 

  7. 7

    Smith, S. & de Lange, T. Tankyrase promotes telomere elongation in human cells. Curr. Biol. 10, 1299–1302 (2000)

    CAS  Article  Google Scholar 

  8. 8

    Kim, S. H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nature Genet. 23, 405–412 (1999)

    CAS  Article  Google Scholar 

  9. 9

    Zhou, X. Z. & Lu, K. P. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107, 347–359 (2001)

    CAS  Article  Google Scholar 

  10. 10

    Ancelin, K. et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol. Cell. Biol. 22, 3474–3487 (2002)

    CAS  Article  Google Scholar 

  11. 11

    Barnett, M. A. et al. Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res. 21, 27–36 (1993)

    CAS  Article  Google Scholar 

  12. 12

    Hanish, J. P., Yanowitz, J. L. & de Lange, T. Stringent sequence requirements for the formation of human telomeres. Proc. Natl Acad. Sci. USA 91, 8861–8865 (1994)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Sprung, C. N., Reynolds, G. E., Jasin, M. & Murnane, J. P. Chromosome healing in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 96, 6781–6786 (1999)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Sprung, C. N., Sabatier, L. & Murnane, J. P. Telomere dynamics in a human cancer cell line. Exp. Cell Res. 247, 29–37 (1999)

    CAS  Article  Google Scholar 

  15. 15

    Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986–990 (1997)

    CAS  Article  Google Scholar 

  16. 16

    Evans, S. K. & Lundblad, V. Positive and negative regulation of telomerase access to the telomere. J. Cell Sci. 113, 3357–3364 (2000)

    CAS  PubMed  Google Scholar 

  17. 17

    Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Baumann, P., Podell, E. & Cech, T. R. Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing. Mol. Cell. Biol. 22, 8079–8087 (2002)

    CAS  Article  Google Scholar 

  19. 19

    de Lange, T. Telomere capping—one strand fits all. Science 292, 1075–1076 (2001)

    CAS  Article  Google Scholar 

  20. 20

    Mitton-Fry, R. M., Anderson, E. M., Hughes, T. R., Lundblad, V. & Wuttke, D. S. Conserved structure for single-stranded telomeric DNA recognition. Science 296, 145–147 (2002)

    ADS  CAS  Article  Google Scholar 

  21. 21

    van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998)

    CAS  Article  Google Scholar 

  22. 22

    Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000)

    CAS  Article  Google Scholar 

  23. 23

    Zhu, X. D., Kuster, B., Mann, M., Petrini, J. H. & Lange, T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nature Genet. 25, 347–352 (2000)

    CAS  Article  Google Scholar 

  24. 24

    Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487 (1998)

    CAS  Article  Google Scholar 

  25. 25

    Cook, B. D., Dynek, J. N., Chang, W., Shostak, G. & Smith, S. Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol. Cell. Biol. 22, 332–342 (2002)

    CAS  Article  Google Scholar 

  26. 26

    Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999)

    CAS  Article  Google Scholar 

  27. 27

    Lei, M., Baumann, P. & Cech, T. R. Cooperative binding of single-stranded telomeric DNA by the Pot1 protein of Schizosaccharomyces pombe. Biochemistry 41, 14560–14568 (2002)

    CAS  Article  Google Scholar 

  28. 28

    Karlseder, J., Smogorzewska, A. & de Lange, T. Senescence induced by altered telomere state, not telomere loss. Science 295, 2446–2449 (2002)

    ADS  CAS  Article  Google Scholar 

  29. 29

    de Lange, T. et al. Structure and variability of human chromosome ends. Mol. Cell. Biol. 10, 518–527 (1990)

    CAS  Article  Google Scholar 

Download references


We are grateful to J. Ye for providing numerous critical reagents for these studies. H. Parsons provided excellent technical assistance. Members of the de Lange laboratory are thanked for comments on this work. This work was supported by a grant from the NIH. D.L. is a recipient of an Ann Siegel Postdoctoral fellowship from the ACS.

Author information



Corresponding author

Correspondence to Titia de Lange.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Loayza, D., de Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003). https://doi.org/10.1038/nature01688

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing