Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B

Abstract

Protein tyrosine phosphatases regulate signal transduction pathways involving tyrosine phosphorylation1 and have been implicated in the development of cancer, diabetes, rheumatoid arthritis and hypertension2. Increasing evidence suggests that the cellular redox state is involved in regulating tyrosine phosphatase activity through the reversible oxidization of the catalytic cysteine to sulphenic acid (Cys-SOH)3,4,5,6. But how further oxidation to the irreversible sulphinic (Cys-SO2H) and sulphonic (Cys-SO3H) forms is prevented remains unclear. Here we report the crystal structures of the regulatory sulphenic and irreversible sulphinic and sulphonic acids of protein tyrosine phosphatase 1B (PTP1B), an important enzyme in the negative regulation of the insulin receptor7,8 and a therapeutic target in type II diabetes and obesity9. We also identify a sulphenyl-amide species that is formed through oxidation of its catalytic cysteine. Formation of the sulphenyl-amide causes large changes in the PTP1B active site, which are reversible by reduction with the cellular reducing agent glutathione. The sulphenyl-amide is a protective intermediate in the oxidative inhibition of PTP1B. In addition, it may facilitate reactivation of PTP1B by biological thiols and signal a unique state of the protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of native and sulphenyl-amide PTP1B.
Figure 2: Putative mechanism of sulphenyl-amide formation and subsequent reactivation.
Figure 3: Different oxidation states of the catalytic cysteine.

Similar content being viewed by others

References

  1. Neel, B. G. & Tonks, N. K. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell Biol. 9, 193–204 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Z. Y. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu. Rev. Pharmacol. Toxicol. 42, 209–234 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Denu, J. M. & Tanner, K. G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulphenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633–5642 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Denu, J. M. & Dixon, J. E. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr. Opin. Chem. Biol. 2, 633–641 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. Meng, T. C., Fukada, T. & Tonks, N. K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387–399 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. Lee, S. R., Kwon, K. S., Kim, S. R. & Rhee, S. G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366–15372 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Klaman, L. D. et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 20, 5479–5489 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldstein, B. J. Protein-tyrosine phosphatase 1B (PTP1B): a novel therapeutic target for type 2 diabetes mellitus, obesity and related states of insulin resistance. Curr. Drug. Targets Immune Endocr. Metabol. Disord. 1, 265–275 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Barford, D. Protein phosphatases. Curr. Opin. Struct. Biol. 5, 728–734 (1995)

    Article  CAS  PubMed  Google Scholar 

  11. Pannifer, A. D., Flint, A. J., Tonks, N. K. & Barford, D. Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by X-ray crystallography. J. Biol. Chem. 273, 10454–10462 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Barford, D., Flint, A. J. & Tonks, N. K. Crystal structure of human protein tyrosine phosphatase 1B. Science 263, 1397–1404 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Jia, Z., Barford, D., Flint, A. J. & Tonks, N. K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 268, 1754–1758 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Lohse, D. L., Denu, J. M., Santoro, N. & Dixon, J. E. Roles of aspartic acid-181 and serine-222 in intermediate formation and hydrolysis of the mammalian protein-tyrosine-phosphatase PTP1. Biochemistry 36, 4568–4575 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Sarmiento, M., Zhao, Y., Gordon, S. J. & Zhang, Z. Y. Molecular basis for substrate specificity of protein-tyrosine phosphatase 1B. J. Biol. Chem. 273, 26368–26374 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Scapin, G., Patel, S., Patel, V., Kennedy, B. & Asante-Appiah, E. The structure of apo protein-tyrosine phosphatase 1B C215S mutant: more than just an S → O change. Protein Sci. 10, 1596–1605 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahadev, K., Zilbering, A., Zhu, L. & Goldstein, B. J. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21938–21942 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Claiborne, A. et al. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38, 15407–15416 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Claiborne, A., Miller, H., Parsonage, D. & Ross, R. P. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J. 7, 1483–1490 (1993)

    Article  CAS  PubMed  Google Scholar 

  20. Barford, D., Kelly, J., Flint, A. J. & Tonks, N. K. Purification and crystallization of the catalytic domain of human protein tyrosine phosphatase 1B expressed in Escherichia coli. J. Mol. Biol. 239, 726–730 (1994)

    Article  CAS  PubMed  Google Scholar 

  21. Pflugrath, J. W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D 55, 1718–1725 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  23. Hartshorn, M. J. A visualisation aid for structure-based drug design. J. Comput. Aid. Mol. Des. (in the press)

Download references

Acknowledgements

We thank N. Wallis and G. Williams for discussions; O. Callaghan for compounds; I. Tickle for assistance with crystallographic software; and D. Barford for access to his data before submission and for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harren Jhoti.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Montfort, R., Congreve, M., Tisi, D. et al. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423, 773–777 (2003). https://doi.org/10.1038/nature01681

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01681

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing