Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fission yeast mod5p regulates polarized growth through anchoring of tea1p at cell tips

Abstract

Microtubules have a central role in eukaryotic cell polarity1, in part through interactions between microtubule end-binding proteins and the cell cortex2,3. In the fission yeast Schizosaccharomyces pombe, microtubules and the polarity modulator tea1p maintain cylindrical cell shape and strictly antipodal cell growth4,5,6,7. The tea1p protein is transported to cell tips by association with growing microtubule plus ends8; once at cell tips, tea1p releases from microtubule ends and associates with the cell cortex, where it coordinates polarized growth4,6. Here we describe a cortical protein, mod5p, that regulates the dynamic behaviour of tea1p. In mod5Δ cells, tea1p is efficiently transported on microtubules to cell tips but fails to anchor properly at the cortex and thus fails to accumulate to normal levels. mod5p contains a signal for carboxy-terminal prenylation and in wild-type cells is associated with the plasma membrane at cell tips. However, in tea1Δ cells, although mod5p remains localized to the plasma membrane, mod5p is no longer restricted to the cell tips. We propose that tea1p and mod5p act in a positive-feedback loop in the microtubule-mediated regulation of cell polarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mod5Δ cells fail to localize tea1p at cell ends.
Figure 2: Microtubule-independent targeting of tea1p to the cortex depends on mod5p.
Figure 3: tea1p is transported on microtubule ends to cell tips in mod5Δ cells.
Figure 4: mod5p localization to cell tips depends on a functional CaaX sequence and on tea1p.

Similar content being viewed by others

References

  1. Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 (1996)

    Article  CAS  PubMed  Google Scholar 

  2. Schuyler, S. C. & Pellman, D. Microtubule ‘plus-end-tracking proteins’: The end is just the beginning. Cell 105, 421–424 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Gundersen, G. G. Evolutionary conservation of microtubule-capture mechanisms. Nature Rev. Mol. Cell Biol. 3, 296–304 (2002)

    Article  CAS  Google Scholar 

  4. Mata, J. & Nurse, P. tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89, 939–949 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Sawin, K. E. & Nurse, P. Regulation of cell polarity by microtubules in fission yeast. J. Cell Biol. 142, 457–471 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hayles, J. & Nurse, P. A journey into space. Nature Rev. Mol. Cell Biol. 2, 647–656 (2001)

    Article  CAS  Google Scholar 

  7. Chang, F. Establishment of a cellular axis in fission yeast. Trends Genet. 17, 273–278 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Behrens, R. & Nurse, P. Roles of fission yeast tea1p in the localization of polarity factors and in organizing the microtubular cytoskeleton. J. Cell Biol. 157, 783–793 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Browning, H. et al. Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast. J. Cell Biol. 151, 15–28 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brunner, D. & Nurse, P. CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102, 695–704 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Adachi, Y., Toda, T., Niwa, O. & Yanagida, M. Differential expressions of essential and nonessential alpha-tubulin genes in Schizosaccharomyces pombe. Mol. Cell. Biol. 6, 2168–2178 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tran, P. T., Marsh, L., Doye, V., Inoue, S. & Chang, F. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–411 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ding, D. Q., Chikashige, Y., Haraguchi, T. & Hiraoka, Y. Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J. Cell Sci. 111, 701–712 (1998)

    CAS  PubMed  Google Scholar 

  14. Drummond, D. R. & Cross, R. A. Dynamics of interphase microtubules in Schizosaccharomyces pombe. Curr. Biol. 10, 766–775 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, F. L. & Casey, P. J. Protein prenylation: Molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996)

    Article  CAS  PubMed  Google Scholar 

  16. Arellano, M., Niccoli, T. & Nurse, P. Tea3p is a cell end marker activating polarized growth in Schizosaccharomyces pombe. Curr. Biol. 12, 751–756 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Bahler, J. & Pringle, J. R. Pom1p, a fission yeast protein kinase that provides positional information for both polarized growth and cytokinesis. Genes Dev. 12, 1356–1370 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Glynn, J. M., Lustig, R. J., Berlin, A. & Chang, F. Role of bud6p and tea1p in the interaction between actin and microtubules for the establishment of cell polarity in fission yeast. Curr. Biol. 11, 836–845 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Bienz, M. The subcellular destinations of APC proteins. Nature Rev. Mol. Cell Biol. 3, 328–338 (2002)

    Article  CAS  Google Scholar 

  20. Miller, R. K., Cheng, S. C. & Rose, M. D. Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol. Biol. Cell 11, 2949–2959 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260–2262 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Korinek, W. S., Copeland, M. J., Chaudhuri, A. & Chant, J. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257–2259 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104, 923–935 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Tirnauer, J. S., Grego, S., Salmon, E. D. & Mitchison, T. J. EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol. Biol. Cell 13, 3614–3626 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Komarova, Y. A., Akhmanova, A. S., Kojima, S., Galjart, N. & Borisy, G. G. Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol. 159, 589–599 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986)

    Article  CAS  PubMed  Google Scholar 

  28. Moreno, S., Klar, A. & Nurse, P. Molecular analysis of the fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991)

    Article  CAS  PubMed  Google Scholar 

  29. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. Woods, A. et al. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93, 491–500 (1989)

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Wellcome Trust Centre for Cell Biology for discussions, and R. Allshire, I. Davis, W. Earnshaw and H. Ohkura for critical reading of the manuscript. This work was supported by a Wellcome Trust Senior Research Fellowship to K.E.S. H.A.S. is currently a Caledonian Research Foundation Post-doctoral Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E. Sawin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snaith, H., Sawin, K. Fission yeast mod5p regulates polarized growth through anchoring of tea1p at cell tips. Nature 423, 647–651 (2003). https://doi.org/10.1038/nature01672

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01672

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing