Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal alignment of hydrogen levels in semiconductors, insulators and solutions

Abstract

Hydrogen strongly affects the electronic and structural properties of many materials. It can bind to defects or to other impurities, often eliminating their electrical activity: this effect of defect passivation is crucial to the performance of many photovoltaic and electronic devices1,2. A fuller understanding of hydrogen in solids is required to support development of improved hydrogen-storage systems3, proton-exchange membranes for fuel cells, and high-permittivity dielectrics for integrated circuits. In chemistry and in biological systems, there have also been many efforts to correlate proton affinity and deprotonation with host properties4. Here we report a systematic theoretical study (based on ab initio methods) of hydrogen in a wide range of hosts, which reveals the existence of a universal alignment for the electronic transition level of hydrogen in semiconductors, insulators and even aqueous solutions. This alignment allows the prediction of the electrical activity of hydrogen in any host material once some basic information about the band structure of that host is known. We present a physical explanation that connects the behaviour of hydrogen to the line-up of electronic band structures at heterojunctions.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Formation energy of interstitial hydrogen as a function of Fermi level in two different semiconductors, illustrating the qualitatively different position of the ɛ(+ / - ) level.
Figure 2: Band line-ups and position of the ɛ(+ / - ) level for a range of semiconductors and insulators.

References

  1. Pankove, J. I. & Johnson, N. M. Semiconductors and Semimetals Vol. 34, Hydrogen in Semiconductors (Boston, Academic, 1991)

    Google Scholar 

  2. Blöchl, P. & Stathis, J. H. Hydrogen electrochemistry and stress-induced leakage current in silica. Phys. Rev. Lett. 62, 372–375 (1999)

    ADS  Article  Google Scholar 

  3. Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001)

    ADS  CAS  Article  Google Scholar 

  4. Mills, B. E., Martin, R. L. & Shirley, D. A. Further studies of the core binding energy-proton affinity correlation in molecules. J. Am. Chem. Soc. 98, 2380–2385 (1976)

    CAS  Article  Google Scholar 

  5. Van de Walle, C. G. & Johnson, N. M. in Semiconductors and Semimetals Vol. 57, Gallium Nitride (GaN) II (eds Pankove, J. I. & Moustakas, T. D.) 157–184 (Academic, Boston, 1998)

    Google Scholar 

  6. Van de Walle, C. G. Hydrogen as a cause of doping in ZnO. Phys. Rev. Lett. 85, 1012–1015 (2000)

    ADS  CAS  Article  Google Scholar 

  7. Hofmann, D. M. et al. Hydrogen: a relevant shallow donor in zinc oxide. Phys. Rev. Lett. 88, 045504 (2002)

    ADS  Article  Google Scholar 

  8. Limpijumnong, S. & Van de Walle, C. G. Passivation and doping due to hydrogen in III-nitrides. Phys. Status Solidi B 228, 303–307 (2001)

    ADS  CAS  Article  Google Scholar 

  9. Franciosi, A. & Van de Walle, C. G. Heterojunction band offset engineering. Surf. Sci. Rep. 25, 1–140 (1996)

    ADS  CAS  Article  Google Scholar 

  10. Bockstedte, M., Kley, A., Neugebauer, J. & Scheffler, M. Density-functional theory calculations for poly-atomic systems: Electronic structure, static and elastic properties and ab initio molecular dynamics. Comput. Phys. Commun. 107, 187–222 (1997)

    ADS  CAS  Article  Google Scholar 

  11. Louie, S. G., Froyen, S. & Cohen, M. L. Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys. Rev. B 26, 1738–1742 (1982)

    ADS  CAS  Article  Google Scholar 

  12. Van de Walle, C. G. & Martin, R. M. Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B 34, 5621–5634 (1986)

    ADS  CAS  Article  Google Scholar 

  13. Van de Walle, C. G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989)

    ADS  CAS  Article  Google Scholar 

  14. Majewski, J. A., Städele, M. & Vogl, P. Stability and band offsets of SiC/GaN, SiC/AlN, and AlN/GaN heterostructures. Mater. Res. Soc. Symp. Proc. 449, 917–922 (1997)

    CAS  Article  Google Scholar 

  15. Yu, E. T., McCaldin, J. O. & McGill, T. C. in Solid State Physics Vol. 46 (eds Ehrenreich, H. & Turnbull, D.) 1–146 (Academic, Boston, 1992)

    Google Scholar 

  16. Look, D. C. et al. Donor and acceptor concentrations in degenerate InN. Appl. Phys. Lett. 80, 258–260 (2002)

    ADS  CAS  Article  Google Scholar 

  17. Janotti, A., Zhang, S. B., Wei, S.-H. & Van de Walle, C. G. The effects of hydrogen on the electronic properties of GaAsN alloys. Phys. Rev. Lett. 89, 086403 (2002)

    ADS  CAS  Article  Google Scholar 

  18. Ledebo, L. Å. & Ridley, B. K. On the position of energy levels related to transition-metal impurities in III-V semiconductors. J. Phys. C 15, L961–L964 (1982)

    CAS  Article  Google Scholar 

  19. Caldas, M. J., Fazzio, A. & Zunger, A. A universal trend in the binding energies of deep impurities in semiconductors. Appl. Phys. Lett. 45, 671–673 (1984)

    ADS  CAS  Article  Google Scholar 

  20. Tersoff, J. & Harrison, W. A. Transition-metal impurities in semiconductors — their connection with band lineups and Schottky barriers. Phys. Rev. Lett. 58, 2367–2370 (1987)

    ADS  CAS  Article  Google Scholar 

  21. Tersoff, J. Theory of semiconductor heterojunctions: The role of quantum dipoles. Phys. Rev. B 30, 4874–4877 (1984)

    ADS  CAS  Article  Google Scholar 

  22. NIST Chemistry WebBook 〈http://webbook.nist.gov/chemistry〉 (March 2003).

  23. Mejias, J. A. & Lago, S. Calculation of the absolute hydration enthalpy and free energy of H+ and OH-. J. Chem. Phys. 113, 7306–7316 (2000)

    ADS  CAS  Article  Google Scholar 

  24. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001)

    ADS  Article  Google Scholar 

  25. Tuttle, B. R. Ab initio valence band offsets between Si(100) and SiO2 from microscopic models. Phys. Rev. B 67, 155324 (2003)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Limpijumnong, M. Fuchs, M. Chabinyc, D. Biegelsen and the late J. McCaldin for discussions and support. This work was supported in part by the Air Force Office of Scientific Research and by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris G. Van de Walle.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van de Walle, C., Neugebauer, J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626–628 (2003). https://doi.org/10.1038/nature01665

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01665

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing