Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of osteoblast function and regulation of bone mass

Abstract

The skeleton is an efficient 'servo' (feedback-controlled/steady-state) system that continuously integrates signals and responses which sustain its functions of delivering calcium while maintaining strength. In many individuals, bone mass homeostasis starts failing in midlife, leading to bone loss, osteoporosis and debilitating fractures. Recent advances, spearheaded by genetic information, offer the opportunity to stop or reverse this downhill course.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determinants of skeletal homeostasis and bone mass.
Figure 2: Leptin signalling pathways.
Figure 3: Transcriptional control of osteoblastic, chondrocytic, adipocytic and myocytic differentiation.
Figure 4: A model for LRP5 signalling pathway in bone.

Similar content being viewed by others

References

  1. Neer, R. M. et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Rodan, G. A. Bone mass homeostasis and bisphosphonate action. Bone 20, 1–4 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Ehrlich, P. J. & Lanyon, L. E. Mechanical strain and bone cell function: a review. Osteoporosis Int. 13, 688–700 (2002).

    Article  CAS  Google Scholar 

  4. Pavalko, F. M. et al. A Model for mechanotransduction in bone cells: The load-bearing mechanosomes. J. Cell. Biochem. 88, 104–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Riggs, B. L., Khosla, S. & Melton, L. J. III Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev. 23, 279–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt, A., Harada, S. & Rodan, G. A. in Principles of Bone Biology (eds Bilezikian, J. P., Raisz, L. G. & Rodan, G. A.) 1455–1466 (Academic, San Diego, 2002).

    Google Scholar 

  7. Frost, H. M. Cybernetic aspects of bone modeling and remodeling with special reference to osteoporosis and whole-bone strength. Am. J. Hum. Biol. 13, 235–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Martin, T. J. & Rodan, G. A. in Osteoporosis (eds Marcus, R., Feldman, D. & Kelsey, J.) 361–371 (Academic, San Diego, 2002).

    Google Scholar 

  9. Pocock, N. A. et al. Genetic determinants of bone mass in adults. A twin study. J. Clin. Invest. 80, 706–710 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seeman, E. et al. Reduced bone mass in daughters of women with osteoporosis. N. Engl. J. Med. 320, 554–558 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Ralston, S. H. Genetic control of susceptibility to osteoporosis. J. Clin. Endocrinol. Metab. 87, 2460–2466 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Mosekilde, L. Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner. 10, 13–35 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Wallace, B. A. & Cumming, R. G. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif. Tissue Int. 67, 10–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Kontulainen, S. et al. Good maintenance of exercise-induced bone gain with decreased training of female tennis and squash players: a prospective 5-year follow-up study of young and old starters and controls. J. Bone Miner. Res. 16, 195–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Corral, D. A. et al. Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc. Natl Acad. Sci. USA 95, 13835–13840 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Thomas, T. et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140, 1630–1638 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Burguera, B. et al. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology 142, 3546–3553 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Khosla, S. Leptin-central or peripheral to the regulation of bone metabolism? Endocrinology 143, 4161–4164 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Bliziotes, M. et al. Bone histomorphometric and biomechanical abnormalities in mice homozygous for deletion of the dopamine transporter gene. Bone 26, 15–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Baldock, P. A. et al. Hypothalamic Y2 receptors regulate bone formation. J. Clin. Invest. 109, 915–921 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thorsell, A. & Heilig, M. Diverse functions of neuropeptide Y revealed using genetically modified animals. Neuropeptides 36, 182–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Mahns, D. A., Lacroix, J. S. & Potter, E. K. Inhibition of vagal vasodilatation by a selective neuropeptide Y Y2 receptor agonist in the bronchial circulation of anaesthetised dogs. J. Auton. Nerv. Syst. 73, 80–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Smith-White, M. A., Herzog, H. & Potter, E. K. Role of neuropeptide Y Y(2) receptors in modulation of cardiac parasympathetic neurotransmission. Regul. Pept. 103, 105–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Flier, J. S. Physiology: is brain sympathetic to bone? Nature 420, 619–622 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Minkowitz, B., Boskey, A. L., Lane, J. M., Pearlman, H. S. & Vigorita, V. J. Effects of propranolol on bone metabolism in the rat. J. Orthop. Res. 9, 869–875 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Schwartzman, R. J. New treatments for reflex sympathetic dystrophy. N. Engl. J. Med. 343, 654–656 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Ducy, P., Schinke, T. & Karsenty, G. The osteoblast: a sophisticated fibroblast under central surveillance. Science 289, 1501–1504 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Rosen, E. D. & Spiegelman, B. M. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16, 145–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Arnold, H. H. & Winter, B. Muscle differentiation: more complexity to the network of myogenic regulators. Curr. Opin. Genet. Dev. 8, 539–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Karsenty, G. & Wagner, E. F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A. & de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16, 2813–2828 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Inada, M. et al. Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev. Dyn. 214, 279–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Ueta, C. et al. Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J. Cell Biol. 153, 87–100 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takeda, S., Bonnamy, J. P., Owen, M. J., Ducy, P. & Karsenty, G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 15, 467–481 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Jheon, A. H., Ganss, B., Cheifetz, S. & Sodek, J. Characterization of a novel KRAB/C2H2 zinc finger transcription factor involved in bone development. J. Biol. Chem. 276, 18282–18289 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kundu, M. et al. Cbfβ interacts with Runx2 and has a critical role in bone development. Nature Genet. 32, 639–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Yoshida, C. A. et al. Core-binding factor β interacts with Runx2 and is required for skeletal development. Nature Genet. 32, 633–638 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Bendall, A. J. & Abate-Shen, C. Roles for Msx and Dlx homeoproteins in vertebrate development. Gene 247, 17–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Robledo, R. F., Rajan, L., Li, X. & Lufkin, T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev. 16, 1089–1101 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grigoriadis, A. E., Wang, Z. Q. & Wagner, E. F. Fos and bone cell development: lessons from a nuclear oncogene. Trends Genet. 11, 436–441 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Jochum, W. et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Med. 6, 980–984 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Sabatakos, G. et al. Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nature Med. 6, 985–990 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Ducy, P. et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 13, 1025–1036 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Geoffroy, V., Kneissel, M., Fournier, B., Boyde, A. & Matthias, P. High bone resorption in adult aging transgenic mice overexpressing Cbfa1/Runx2 in cells of the osteoblastic lineage. Mol. Cell. Biol. 22, 6222–6233 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, W. et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J. Cell Biol. 155, 157–166 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Kato, M. et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157, 303–314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hey, P. J. et al. Cloning of a novel member of the low-density lipoprotein receptor family. Gene 216, 103–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J. & Skarnes, W. C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407, 535–538 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Mao, J. et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell 7, 801–809 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Bain, G., Muller, T., Wang, X. & Papkoff, J. Activated β-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem. Biophys. Res. Commun. 301, 84–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Zorn, A. M. Wnt signalling: antagonistic Dickkopfs. Curr. Biol. 11, R592–R595 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Hadjiargyrou, M. et al. Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J. Biol. Chem. 277, 30177–30182 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Van Wesenbeeck, L. et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am. J. Hum. Genet. 72, 763–771 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Brunkow, M. E. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. 68, 577–589 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Balemans, W. & Van Hul, W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev. Biol. 250, 231–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Rodan, G. A. & Martin, T. J. Therapeutic approaches to bone diseases. Science 289, 1508–1514 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Mao, B. et al. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature 417, 664–667 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Hauer and J. Campbell for their assistance with artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon A. Rodan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, Si., Rodan, G. Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003). https://doi.org/10.1038/nature01660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01660

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing