Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin


Many independent lines of evidence document a large increase in the Earth's surface oxidation state 2,400 to 2,200 million years ago1,2,3,4, and a second biospheric oxygenation 800 to 580 million years ago, just before large animals appear in the fossil record5,6. Such a two-staged oxidation implies a unique ocean chemistry for much of the Proterozoic eon, which would have been neither completely anoxic and iron-rich as hypothesized for Archaean seas, nor fully oxic as supposed for most of the Phanerozoic eon7. The redox chemistry of Proterozoic oceans has important implications for evolution8, but empirical constraints on competing environmental models are scarce. Here we present an analysis of the iron chemistry of shales deposited in the marine Roper Basin, Australia, between about 1,500 and 1,400 million years ago, which record deep-water anoxia beneath oxidized surface water. The sulphur isotopic compositions of pyrites in the shales show strong variations along a palaeodepth gradient, indicating low sulphate concentrations in mid-Proterozoic oceans. Our data help to integrate a growing body of evidence favouring a long-lived intermediate state of the oceans, generated by the early Proterozoic oxygen revolution and terminated by the environmental transformation late in the Proterozoic eon.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: The relationship between the FeHR/FeT ratio and DOP in black shales of the Roper Group.
Figure 2: The S isotopic composition of sedimentary pyrites from Roper black shales.
Figure 3: Fe-speciation, S-isotopic, and sequence-stratigraphic data for the Roper Group.


  1. Holland, H. D. in Early Life on Earth (ed. Bengtson, S.) 237–244 (Columbia Univ. Press, New York, 1994)

    Google Scholar 

  2. Farquhar, J., Bao, H. & Thiemans, M. H. Atmospheric influence of the Earth's earliest sulphur cycle. Science 289, 756–758 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Canfield, D. E., Habicht, K. S. & Thamdrup, B. The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658–661 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotopic evidence for the stepwise oxidation of the Precambrian environment. Nature 359, 605–609 (1992)

    Article  ADS  CAS  Google Scholar 

  5. Derry, L. A., Kaufman, A. J. & Jacobsen, S. B. Sedimentary cycling and environmental change in the late Proterozoic: evidence from stable and radiogenic isotopes. Geochim. Cosmochim. Acta 56, 1317–1329 (1992)

    Article  ADS  CAS  Google Scholar 

  6. Canfield, D. E. & Teske, A. Late Proterozoic rise in atmospheric oxygen concentrations inferred from phylogenetic and stable-isotope studies. Nature 382, 127–132 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297, 1137–1142 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Abbott, S. T. & Sweet, I. P. Tectonic control on third-order sequences in a siliciclastic ramp-style basin: an example from the Roper Superbasin (Mesoproterozoic), northern Australia. Aust. J. Earth Sci. 47, 637–657 (2000)

    Article  ADS  Google Scholar 

  10. Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Raiswell, R., Newton, R. & Wignall, P. B. An indicator of water-column anoxia: resolution of biofacies variations in the Kimmeridge clay (upper Jurassic, U.K.). J. Sedim. Res. 71, 286–294 (2001)

    Article  CAS  Google Scholar 

  12. Shen, Y., Canfield, D. E. & Knoll, A. H. Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia. Am. J. Sci. 302, 81–109 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Wijsman, J. W. M., Middelburg, J. J., Herman, P. M. J., Böttcher, M. E. & Heip, C. H. R. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Mar. Chem. 74, 261–278 (2001)

    Article  CAS  Google Scholar 

  14. Jackson, M. J. & Raiswell, R. Sedimentology and carbon-sulphur geochemistry of the Velkerri Formation, a mid-Proterozoic potential oil source in northern Australia. Precambr. Res. 54, 81–108 (1991)

    Article  ADS  CAS  Google Scholar 

  15. Hayes, J. M., Lambert, I. B. & Strauss, H. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 129–134 (Cambridge Univ. Press, Cambridge, 1992)

    Google Scholar 

  16. Canfield, D. E. & Raiswell, R. The evolution of the sulfur cycle. Am. J. Sci. 299, 697–723 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Muir, M. D., Donnelly, T. H., Wilkins, R. W. T. & Armstrong, K. J. Stable isotope, petrological, and fluid inclusion studies of minor mineral deposits from the McArthur Basin: implications for the genesis of some sediment-hosted base metal mineralization from the Northern Territory. Aust. J. Earth Sci. 32, 239–260 (1985)

    Article  ADS  Google Scholar 

  18. Zaback, D. A., Pratt, L. M. & Hayes, J. M. Transport and reduction of sulfate and immobilization of sulfide in marine black shales. Geology 21, 141–144 (1993)

    Article  ADS  CAS  Google Scholar 

  19. Donnelly, T. H. & Crick, I. H. Depositional environment of the middle Proterozoic Velkerri Formation in northern Australia: geochemical evidence. Precambr. Res. 42, 165–172 (1988)

    Article  ADS  CAS  Google Scholar 

  20. Lyons, T. W. Sulfur isotopic trends and pathways of iron sulphide formation in upper Holocene sediments of the anoxic Black Sea. Geochim. Cosmochim. Acta 61, 3367–3382 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Gautier, D. Cretaceous shales from the western interior of North America: sulfur/carbon ratios and sulfur isotope composition. Geology 14, 225–228 (1986)

    Article  ADS  CAS  Google Scholar 

  22. Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376, 53–56 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Lyons, T. W., Luepke, J. J., Schreiber, M. E. & Zeig, G. A. Sulfur geochemical constraints on Mesoproterozoic restricted marine deposition: lower Belt Supergroup, northwestern United States. Geochim. Cosmochim. Acta 64, 427–437 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Strauss, H. & Schieber, J. A sulfur isotope study of pyrite genesis: The Mid-Proterozoic Newland Formation, Belt Supergroup, Montana. Geochim Cosmochim Acta 54, 197–204 (1990)

    Article  ADS  CAS  Google Scholar 

  25. Kah, L. C., Lyons, T. W. & Chesley, J. T. Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution. Precambr. Res. 111, 203–234 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Hurtgen, M. T., Arthur, M. A., Suits, N. S. & Kaufman, A. J. The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? Earth Planet. Sci. Lett. 203, 413–429 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Pavlov, A. A., Hurtgen, M. T., Kasting, J. F. & Arthur, M. A. Methane-rich Proterozoic atmosphere? Geology 31, 87–90 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Baker, P. A. & Kastner, M. Constraints on the formation of sedimentary dolomite. Science 213, 214–216 (1981)

    Article  ADS  CAS  Google Scholar 

  29. Knoll, A. H. & Carroll, S. B. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129–2137 (1999)

    Article  CAS  Google Scholar 

  30. Ross, G. M., Bloch, J. D. & Krouse, H. R. Neoproterozoic strata of the southern Canadian Cordillera and the isotopic evolution of seawater sulfate. Precambr. Res. 73, 71–99 (1995)

    Article  ADS  CAS  Google Scholar 

Download references


We thank A. Bauer and J. Brocks for help in sample collection, J. Fong and L. Liu for help with geochemical analysis, J. Payne for help with statistics, and D. Canfield, J. Hayes, M. Hurtgen, T. Lyons and G. Ross for comments and suggestions. This study was supported by an NRC Research Associateship (Y.S.), the NASA Exobiology programme, the Astrobiology Institute, Macquarie University, and the Australian Research Council.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yanan Shen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shen, Y., Knoll, A. & Walter, M. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423, 632–635 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing