Reticular synthesis and the design of new materials


The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The MOF-5 structure and its topology.
Figure 2: Examples of SBUs from carboxylate MOFs. O, red; N, green; C, black.
Figure 3: The control of dimensionality of linked paddle-wheel units by use of precise linker geometry.
Figure 4: The porosity of MOFs compared to zeolites.
Figure 5: The deconstruction of diamond and lonsdaleite.


  1. 1

    Stein, A., Keller, S. W. & Mallouk, T. E. Turning down the heat: Design and mechanism in solid-state synthesis. Science 259, 1558–1563 (1993)

    ADS  CAS  PubMed  Article  Google Scholar 

  2. 2

    Yaghi, O. M., O'Keeffe, M. & Kanatzidis, M. G. Design of solids from molecular building blocks: golden opportunities for solid state chemistry. J. Solid State Chem. 152, 1–2 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc. Chem. Res. 31, 474–484 (1998)

    CAS  Article  Google Scholar 

  4. 4

    Batten, S. T. & Robson, R. Interpenetrating nets: Ordered, periodic entanglement. Angew. Chem. Int. Edn Engl. 37, 1460–1494 (1998)

    Article  Google Scholar 

  5. 5

    Férey, G. Building units design and scale chemistry. J. Solid State Chem. 152, 37–48 (2000)

    ADS  Article  Google Scholar 

  6. 6

    Kitagawa, S. & Kondo, M. Functional micropore chemistry of crystalline metal complex-assembled compounds. Bull. Chem. Soc. Jpn 71, 1739–1753 (1998)

    CAS  Article  Google Scholar 

  7. 7

    Yaghi, O. M., O'Keeffe, M. & Kanatzidis, M. G. Special issue on the design of solids from molecular building blocks: golden opportunities for solid state chemistry. J. Solid State Chem. 152, 1–321 (2000)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Eddaoudi, M. et al. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001)

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Yaghi, O. M., Sun, Z., Richardson, D. A. & Groy, T. L. Directed transformation of molecules to solids: Synthesis of microporous sulfide from molecular germanium sulfide cages. J. Am. Chem. Soc. 116, 807–808 (1994)

    CAS  Article  Google Scholar 

  10. 10

    Corey, E. J. Retrosynthetic thinking-essentials and examples. Chem. Soc. Rev. 17, 111–133 (1988)

    CAS  Article  Google Scholar 

  11. 11

    Lehn, J. M. Supramolecular chemistry-scope and perspectives. Chem. Scr. 28, 237–262 (1988)

    CAS  Google Scholar 

  12. 12

    Discussion 1: Innovation in Crystal Engineering CrystEngComm [online]; available at 〈〉 (August 2002).

  13. 13

    Moulton, B. & Zaworotko, M. J. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101, 1629–1658 (2001)

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Braga, D., Grepioni, F. & Desiraju, G. R. Crystal engineering and organometallic architecture. Chem. Rev. 98, 1375–1406 (1998)

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Wells, A. F. Structural Inorganic Chemistry, (Oxford University Press, New York, 1984)

    Google Scholar 

  16. 16

    Dunbar, K. R. & Heintz, R. A. Chemistry of transition metal cyanide compounds: Modern perspectives. Prog. Inorg. Chem. 45, 283–391 (1997)

    CAS  Google Scholar 

  17. 17

    Gramaccioli, C. M. Crystal structure of zinc glutamate dihydrate. Acta Crystallogr. 21, 600–605 (1966)

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Okada, K., Kay, M. I., Cromer, D. T. & Almodovar, I. Crystal structure by neutron diffraction and antiferroelectric phase transition in copper formate tetrahydrate. J. Chem. Phys. 44, 1648–1653 (1966)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Jarvis, J. A. J. Crystal structure of a complex of cupric chloride and 1, 2, 4-triazole. Acta. Crystallogr. 15, 964–966 (1962)

    CAS  Article  Google Scholar 

  20. 20

    Sterling, C. Crystal structure of wedellite. Science 146, 518–519 (1964)

    ADS  CAS  PubMed  Article  Google Scholar 

  21. 21

    Robl, C. Water clustering in the zeolite-like channel structure of Na2Zn(C6H2(COO)4·9H2O. Mater. Res. Bull. 27, 99–107 (1992)

    CAS  Article  Google Scholar 

  22. 22

    Weiss, A., Riegler, E., Alt, I., Bohme, H. & Robl, C. Transition metal squarates 1. Chain structures M(C4O4)·4H2O. Z. Naturforsch. B. 41, 18–24 (1986)

    Article  Google Scholar 

  23. 23

    Kinoshita, Y., Matsubara, I., Higuchi, T. & Saito, Y. The crystal structure of bis (adiponitrilo)copper(I) nitrate. Bull. Chem. Soc. Jpn 32, 1221–1226 (1959)

    CAS  Article  Google Scholar 

  24. 24

    Aumüller, A. et al. A radical anion salt of 2, 5-dimethyl-N, N′-dicyanoquinonediimine with extremely high electrical conductivity. Angew. Chem. Int. Edn Engl. 25, 740–741 (1986)

    Article  Google Scholar 

  25. 25

    Hoskins, B. F. & Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111, 5962–5964 (1989)

    CAS  Article  Google Scholar 

  26. 26

    Kim, J. et al. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. J. Am. Chem. Soc. 123, 8239–8247 (2001)

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Brimah, A. K. et al. Towards organometallic zeolites: spontaneous self-assembly of Et3SnCN, CuCN and (nBu4N)CN to supramolecular [(nBu4N)(Et3Sn)2Cu(CN)4]. J. Organometall. Chem. 475, 85–94 (1994)

    CAS  Article  Google Scholar 

  28. 28

    Evans, O. R., Wang, Z. Y., Xiong, R. G., Foxman, B. M. & Lin, W. B. Nanoporous interpenetrated metal-organic diamondoid networks. Inorg. Chem. 38, 2969–2973 (1999)

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Yaghi, O. M., Richardson, D. A., Li, G., Davis, C. E. & Groy, T. L. Open-framework solids with diamond-like structures prepared from clusters and metal-organic building blocks. Mater. Res. Soc. Symp. Proc. 371, 15–19 (1995)

    CAS  Article  Google Scholar 

  30. 30

    MacGillivray, L. R., Subramanian, S. & Zaworotko, M. J. Interwoven two- and three-dimensional coordination polymers through self-assembly of Cu (I) cations with linear bidentate ligands. Chem. Commun., 1325–1326 (1994)

  31. 31

    Hirsch, K. A., Venkataraman, D., Wilson, S. R., Moore, J. S. & Lee, S. Crystallization of 4, 4′-biphenyldicarbonitrile with silver (I) salts- a change in topology concomitant with change in counterion leading to a nine diamond network. Chem. Commun., 2199–2200 (1995)

  32. 32

    Carlucci, L. et al. Self-assembly of a three-dimensional network from two dimensional layers via metallic spacers: the (3,4)-connected frame of [Ag3(hmt)2][ClO4]3·2H2O (hmt = hexamethylenetetramine). Chem. Commun., 631–632 (1997)

  33. 33

    Klein, C., Graf, E., Hosseini, M. W. & De Cian, A. Design and structural analysis of interpenetrated 3-D coordination networks formed from self-assembly using tetrapyridinocyclophane and silver cations. New J. Chem. 25, 207–209 (2001)

    CAS  Article  Google Scholar 

  34. 34

    Simard, M., Su, D. & Wuest, J. D. Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J. Am. Chem. Soc. 113, 4696–4698 (1991)

    CAS  Article  Google Scholar 

  35. 35

    Ermer, O. Fivefold-diamond structure of adamantane-1,3,5,7-tetracarboxylic acid. J. Am. Chem. Soc. 110, 3747–3754 (1988)

    CAS  Article  Google Scholar 

  36. 36

    Blake, A. J., Champness, N. R., Hubbertstey, P., Li, W., Withersby, M. A. & Schroder, M. Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord. Chem. Rev. 183, 117–138 (1999)

    CAS  Article  Google Scholar 

  37. 37

    Carlucci, L., Ciani, G., Macchi, P. & Proserpio, D. M. An unprecedented triply interpenetrated chiral network of ‘square planar’ metal centres from the self assembly of copper(II) nitrate and 1,2-bis(4-pyridyl)ethyne. Chem. Commun., 1837–1838 (1998)

  38. 38

    Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. New examples of self-catenation in three dimensional co-ordination networks. J. Chem. Soc. Dalton Trans., 3821–3827 (2000)

  39. 39

    Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. Interlinked molecular squares with [Cu(2,2′-bipy)]2+ corners generating a three-dimensional network of unprecedented topological type. Chem. Commun., 1198–1199 (2001)

  40. 40

    Evans, O. R. & Lin, W. Crystal engineering in NLO materials based on metal-organic coordination networks. Acc. Chem. Res. 35, 511–522 (2002)

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Biradha, K., Hongo, Y. & Fujita, M. Open square-grid coordination polymers of the dimension 20 × 20 Å: remarkably stable and crystalline solids even after guest removal. Angew. Chem. Int. Edn Engl. 39, 3843–3845 (2000)

    CAS  Article  Google Scholar 

  42. 42

    Yaghi, O. M., Li, H. & Groy, T. L. A molecular railroad with large pores: synthesis and structure of Ni(4,4′-bpy)2.5(H2O)2(ClO4)2·1.5(4,4′-bpy)·2H2O. Inorg. Chem. 36, 4292–4293 (1997)

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc. 120, 8571–8572 (1998)

    CAS  Article  Google Scholar 

  44. 44

    Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Yaghi, O. M., Davis, C. E., Li, G. & Li, H. Selective guest binding by tailored channels in a 3-D porous zinc(II) benzenetricarboxylate network. J. Am. Chem. Soc. 119, 2861–2868 (1997)

    CAS  Article  Google Scholar 

  46. 46

    Barthelet, K., Riou, D. & Ferey, G. [VIII(H2O)]3O(O2CC6H4CO2)3·(Cl, 9H2O) (MIL-59): A rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework. Chem. Commun., 1492–1493 (2002)

  47. 47

    Yang, S. Y., Long, L. S., Jiang, Y. B., Huang, R. B. & Zheng, L. S. An exceptionally stable metal-organic framework constructed from the Zn8(SiO4) core. Chem. Mater. 14, 3229–3231 (2002)

    CAS  Article  Google Scholar 

  48. 48

    Eddaoudi, M. et al. Geometric requirements and examples of important structures in the assembly of square building blocks. Proc. Natl. Acad. Sci. USA 99, 4900–4904 (2002)

    ADS  CAS  PubMed  Article  Google Scholar 

  49. 49

    Chen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291, 1021–1023 (2001)

    ADS  CAS  PubMed  Article  Google Scholar 

  50. 50

    Diskin-Posner, Y., Dahal, S. & Goldberg, I. Crystal engineering of metalloporphyrin zeolite analogues. Angew. Chem. Int. Edn Engl. 39, 1288–1292 (2000)

    CAS  Article  Google Scholar 

  51. 51

    Chen, B. et al. Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals (ATC: 1,3,5,7-adamantane tetracarboxylate). J. Am. Chem. Soc. 122, 11559–11560 (2000)

    CAS  Article  Google Scholar 

  52. 52

    Chae, H. K. et al. Tertiary building units: Synthesis, structure, and porosity of a metal-organic dendrimer framework (MODF-1). J. Am. Chem. Soc. 123, 11482–11483 (2001)

    CAS  PubMed  Article  Google Scholar 

  53. 53

    O'Keeffe, M. & Brese, N. E. Uninodal 4-connected nets I: Nets without 3- or 4-rings. Acta Crystallogr. A 48, 663–669 (1992)

    Article  Google Scholar 

  54. 54

    O'Keeffe, M., Eddaoudi, M., Li, H., Reineke, T. & Yaghi, O. M. Frameworks for extended solids: geometrical design principles. J. Solid State Chem. 152, 3–20 (2000)

    ADS  CAS  Article  Google Scholar 

  55. 55

    Delgado Friedrichs, O., Dress, A. W. M., Huson, D. H., Klinowski, J. & Mackay, A. L. Systematic enumeration of crystalline networks. Nature 400, 644–647 (1999)

    ADS  Article  CAS  Google Scholar 

  56. 56

    O'Keeffe, M. Tiling by numbers. Nature 400, 617–618 (1999)

    ADS  CAS  Article  Google Scholar 

  57. 57

    Delgado Friedrichs, O. & Huson, D. H. 4-regular vertex-transitive tilings of E3. Discr. Comput. Geom. 24, 279–292 (2000)

    MATH  Article  Google Scholar 

  58. 58

    Fischer, W. & Koch, E. in International Tables For Crystallography A (ed. Hahn, Th.) Ch. 14 (Kluwer, Dordrecht, 1983)

    Google Scholar 

  59. 59

    Delgado Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. Three-periodic nets and tilings: regular and quasiregular nets. Acta Crystallogr. A 59, 22–27 (2003)

    PubMed  MATH  Article  CAS  Google Scholar 

  60. 60

    O'Keeffe, M. & Hyde, B. G. Crystal structures, I. Patterns and symmetry (Mineralogical Society of America, Washington, DC, 1996)

    Google Scholar 

  61. 61

    Eddaoudi, M. et al. Porous metal-organic polyhedra: 25 angstrom cuboctahedron constructed from 12 Cu2(CO2)4 paddle wheel building blocks. J. Am. Chem. Soc. 123, 4368–4369 (2001)

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Moulton, B., Lu, J., Mondal, A. & Zaworotko, M. Z. Nanoballs: nanoscale faceted polyhedra with large windows and cavities. Chem. Commun., 863–864 (2001)

  63. 63

    Eddaoudi, M., Kim, J., O'Keeffe, M. & Yaghi, O. M. Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: A framework deliberately designed to have the NbO structure type. J. Am. Chem. Soc. 124, 376–377 (2002)

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Chu, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material Cu3(TMA)2(H2O)3 . Science 283, 1148–1150 (1999)

    ADS  Article  Google Scholar 

  65. 65

    Kepert, C. J., Prior, T. J. & Rosseinsky, M. J. A versatile family of interconvertible microporous chiral molecular frameworks: the first example of ligand control of network chirality. J. Am. Chem. Soc. 122, 5158–5168 (2000)

    CAS  Article  Google Scholar 

  66. 66

    Seo, J. S. et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000)

    ADS  CAS  PubMed  Article  Google Scholar 

  67. 67

    Fujita, M. et al. On the structure of transition-metal-linked molecular squares. Chem. Commun., 1535–1536 (1996)

  68. 68

    Stang, P. T. & Olenyuk, B. Self-assembly, symmetry, and molecular architecture: coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra. Acc. Chem. Res. 30, 502–518 (1997)

    CAS  Article  Google Scholar 

  69. 69

    MacGillivray, L. R. & Atwood, J. L. A chiral spherical molecular assembly held together by 60 hydrogen bonds. Nature 389, 469–472 (1997)

    ADS  CAS  Article  Google Scholar 

  70. 70

    Caulder, D. L. & Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 32, 975–982 (1999)

    CAS  Article  Google Scholar 

  71. 71

    Cotton, F. A., Lin, C. & Murillo, C. A. Supramolecular arrays based on dimetal building units. Acc. Chem. Res. 34, 759–771 (2001)

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Gregg, S. J. & Sing, K. S. W. Adsorption, Surface Area and Porosity (Academic Press, New York, 1982)

    Google Scholar 

  73. 73

    Reineke, T. M., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. A microporous lanthanide-organic framework. Angew. Chem. Int. Edn Engl. 38, 2590–2594 (1999)

    CAS  Article  Google Scholar 

  74. 74

    Reineke, T., Eddaoudi, M., Fehr, M., Kelley, D. & Yaghi, O. M. From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. J. Am. Chem. Soc. 121, 1651–1657 (1999)

    CAS  Article  Google Scholar 

  75. 75

    Eddaoudi, M., Li, H. & Yaghi, O. M. Highly porous and stable metal-organic frameworks: Structure design and sorption properties. J. Am. Chem. Soc. 122, 1391–1397 (2000)

    CAS  Article  Google Scholar 

  76. 76

    Kitaura, R., Fujimoto, K., Noro, S., Kondo, M. & Kitagawa, S. A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc = pyrazine-2,3-dicarboxylate; dpyg = 1,2-Di(4-pyridyl)-glycol). Angew. Chem. Int. Edn Engl. 41, 133–135 (2002)

    CAS  Article  Google Scholar 

  77. 77

    Szostak, R. Molecular Sieves: Principles of Synthesis and Identification (Van Nostrand Reinhold, New York, 1989)

    Google Scholar 

  78. 78

    Bhatia, S. Zeolite Catalysis: Principles and Applications (CRC Press, Boca Raton, Florida, 1990)

    Google Scholar 

  79. 79

    Seki, K., Takamizawa, S. & Mori, W. Design and gas adsorption property of a three-dimensional coordination polymer with a stable and highly porous framework. Chem. Lett., 332–333 (2001)

  80. 80

    Millange, F., Serre, C. & Férey, G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH)·{O2C-C6H4-CO2}·{HO2-C6H4-CO2H}x . Chem. Commun., 822–823 (2002)

  81. 81

    Noro, S., Kitagawa, S., Kondo, M. & Seki, M. A new methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angew. Chem. Int. Edn Engl. 39, 2082–2084 (2000)

    CAS  Article  Google Scholar 

  82. 82

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)

    ADS  CAS  PubMed  Article  Google Scholar 

  83. 83

    Davis, M. E., Montes, C., Hathaway, P. E., Arhancet, J. P., Hasha, D. L. & Garces, J. M. Physicochemical properties of VPI-5. J. Am. Chem. Soc. 111, 3919–3924 (1989)

    CAS  Article  Google Scholar 

  84. 84

    Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002)

    ADS  CAS  PubMed  Article  Google Scholar 

  85. 85

    O'Keeffe, M. & Stuart, J. A. Bond energies in solid oxides. Inorg. Chem. 22, 177–179 (1983)

    CAS  Article  Google Scholar 

  86. 86

    Kiang, Y. H., Gardner, G. B., Lee, S., Xu, Z. & Lobkovsky, E. B. Variable pore size, variable chemical functionality, and an example of reactivity within porous phenylacetylene silver salts. J. Am. Chem. Soc. 121, 8204–8215 (1999)

    CAS  Article  Google Scholar 

  87. 87

    Husing, N. & Schubert, U. Aerogels airy materials: Chemistry, structure, and properties. Angew. Chem. Int. Edn Engl. 37, 23–45 (1998)

    Article  Google Scholar 

  88. 88

    Holman, K. T., Pivovar, A. M., Swift, J. A. & Ward, M. D. Metric engineering of soft molecular host frameworks. Acc. Chem. Res. 34, 107–118 (2001)

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Lin, W. B., Wang, Z. & Ma, L. A novel octupolar metal-organic NLO material based on chiral 2D-coordination network. J. Am. Chem. Soc. 121, 11249–11250 (1999)

    CAS  Article  Google Scholar 

  90. 90

    Farrell, R. P., Hambley, T. W. & Lay, P. A. A new class of layered microporous materials: crystal structure of disodium pentakis(trimethylphenylammonium) bis[tris(oxalato(2))-chromate(III)] chloride pentahydrate. Inorg. Chem. 34, 757–758 (1995)

    CAS  Article  Google Scholar 

  91. 91

    Kahn, O. Chemistry and physics of supramolecular magnetic materials. Acc. Chem. Res. 33, 647–657 (2000)

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. Electochemically tunable magnetic phase transition in a high-T c chromium cyanide thin film. Science 271, 49–51 (1996)

    ADS  CAS  Article  Google Scholar 

  93. 93

    Manson, J. L., Campana, C. & Miller, J. S. Interpenetrating three-dimensional rutile-like frameworks. Crystal structure and magnetic properties MnII[C(CN)3]2 . Chem. Commun., 251–252 (1998)

  94. 94

    Bennett, M. V., Beauvais, L. G., Shores, M. P. & Long, J. R. Expanded prussian blue analogues incorporating [Re6Se8(CN)6]3-/4- clusters: adjusting porosity via charge balance. J. Am. Chem. Soc. 123, 8022–8032 (2001)

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Rosi, N. L. et al. Infinite secondary building units and forbidden catenation in metal-organic frameworks, N. L. Angew. Chem. Int. Edn Engl. 41, 284–287 (2001)

    Article  Google Scholar 

  96. 96

    Kitazawa, T., Kikuyama, T., Takeda, M. & Iwamoto, T. Silica-mimetic polymorphism of the Cd(CN)2 host lattice depending on the guest G in Cd(CN)2.xG clathrates. J. Chem. Soc. Dalton Trans. 22, 3715–3720 (1995)

    Article  Google Scholar 

  97. 97

    Li, H., Eddaoudi, M., Laine, A., O'Keeffe, M. & Yaghi, O. M. Noninterpenetrating indium sulfide supertetrahedral cristobalite framework. J. Am. Chem. Soc. 121, 6096–6097 (2001)

    Article  Google Scholar 

  98. 98

    Li, H., Laine, A., O'Keeffe, M. & Yaghi, O. M. Supertetrahedral sulfide crystals with giant cavities and channels. Science 283, 1145–1147 (1999)

    ADS  CAS  PubMed  Article  Google Scholar 

  99. 99

    Tabares, L. C., Navarro, J. A. R. & Salas, J. M. Cooperative guest inclusion by a zeolite analogue coordination polymer: sorption behaviour with gases and amine and group 1 metal salts. J. Am. Chem. Soc. 123, 383–387 (2001)

    CAS  Article  Google Scholar 

  100. 100

    Keller, S. W. An acentric, three dimensional coordination polymer: synthesis and structure of [Cu(pyrimidine)2]BF4 . Angew. Chem. Int. Edn Engl. 36, 247–248 (1997)

    CAS  Article  MathSciNet  Google Scholar 

Download references


O.M.Y. and M.O'K. thank the NSF and the DOE (O.M.Y.) for their support of research in their respective laboratories on the subject of this contribution.

Author information



Corresponding author

Correspondence to Omar M. Yaghi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yaghi, O., O'Keeffe, M., Ockwig, N. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing