Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selectivity in vibrationally mediated single-molecule chemistry


The selective excitation of molecular vibrations provides a means to directly influence the speed and outcome of chemical reactions. Such mode-selective chemistry1 has traditionally used laser pulses to prepare reactants in specific vibrational states2 to enhance reactivity3,4 or modify the distribution of product species5,6. Inelastic tunnelling electrons may also excite molecular vibrations7,8 and have been used to that effect on adsorbed molecules, to cleave individual chemical bonds9 and induce molecular motion10,11,12,13 or dissociation14,15,16,17. Here we demonstrate that inelastic tunnelling electrons can be tuned to induce selectively either the translation or desorption of individual ammonia molecules on a Cu(100) surface. We are able to select a particular reaction pathway by adjusting the electronic tunnelling current and energy during the reaction induction such that we activate either the stretching vibration of ammonia or the inversion of its pyramidal structure. Our results illustrate the ability of the scanning tunnelling microscope to probe single-molecule events in the limit of very low yield and very low power irradiation, which should allow the investigation of reaction pathways not readily amenable to study by more conventional approaches.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Inducing molecular motion with tunnelling electrons.
Figure 2: Thresholds of electron energy needed to induce molecular motion.
Figure 3: Dependence of reaction yield and product on the tunnelling current.
Figure 4: Scheme and one-dimensional potentials of reaction pathways M1 and M2.


  1. Jortner, J., Levine, R. D. & Pullman, B. (eds) Mode Selective Chemistry (Kluwer Academic, Dordrecht, 1991)

  2. Dai, H. L. & Ho, W. (eds) Laser Spectroscopy and Photochemistry on Metal Surfaces (World Scientific, Singapore, 1995)

  3. Higgings, J., Conjusteau, A., Scoles, G. & Bernasek, S. L. State selective vibrational (2ν3) activation of the chemisorption of methane on Pt(111). J Chem. Phys. 114, 5277–5283 (2001)

    ADS  Article  Google Scholar 

  4. Potter, E. D., Herek, J. L., Pedersen, S., Liu, Q. & Zewail, A. H. Femtosecond laser control of a chemical reaction. Nature 355, 66–68 (1992)

    ADS  CAS  Article  Google Scholar 

  5. Sinha, A., Hsiao, M. C. & Crim, F. F. Controlling bimolecular reactions: Mode and bond selected reaction of water with hydrogen atoms. J. Chem. Phys. 94, 4928–4935 (1991)

    ADS  CAS  Article  Google Scholar 

  6. Bronikowski, M. J., Simpson, W. R., Girard, B. & Zare, R. N. Bond-specific chemistry: OD:OH product ratios for the reactions H + HOD(100) and H + HOD(001). J. Chem. Phys. 95, 8647–8648 (1991)

    ADS  CAS  Article  Google Scholar 

  7. Hansma, P. K. (ed.) Tunnelling Spectroscopy: Capabilities, Applications, and New Techniques (Plenum, New York, 1982)

  8. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998)

    ADS  CAS  Article  Google Scholar 

  9. Ho, W. Inducing and viewing bond selected chemistry with tunneling electrons. Acc. Chem. Res. 31, 567–573 (1998)

    CAS  Article  Google Scholar 

  10. Eigler, D. M., Lutz, C. P. & Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600–603 (1991)

    ADS  CAS  Article  Google Scholar 

  11. Stipe, B. C., Rezai, M. A. & Ho, W. Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule. Phys. Rev. Lett. 81, 1263–1266 (1998)

    ADS  CAS  Article  Google Scholar 

  12. Komeda, T., Kim, Y., Kawai, M., Persson, B. N. J. & Ueba, H. Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295, 2055–2058 (2002)

    ADS  CAS  Article  Google Scholar 

  13. Bartels, L. et al. Atomic scale chemistry: Desorption of ammonia from Cu(111) induced by tunneling electrons. Chem. Phys. Lett. 313, 544–552 (1999)

    ADS  CAS  Article  Google Scholar 

  14. Avouris, Ph. Manipulation of matter at the atomic and molecular level. Acc. Chem. Res. 28, 95–102 (1995)

    CAS  Article  Google Scholar 

  15. Stipe, B. C. et al. Single-molecule dissociation by tunneling electrons. Phys. Rev. Lett. 78, 4410–4413 (1997)

    ADS  CAS  Article  Google Scholar 

  16. Hla, S. W., Bartels, L., Meyer, G. & Rieder, K. H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000)

    ADS  CAS  Article  Google Scholar 

  17. Kim, Y., Komeda, T. & Kawai, M. Single-molecule reaction and characterization by vibrational excitation. Phys. Rev. Lett. 89, 126104 (2002)

    ADS  Article  Google Scholar 

  18. Rust, H.-P., Buisset, J., Schweizer, E. K. & Cramer, L. High precision mechanical approach mechanism for a low temperature scanning tunneling microscope. Rev. Sci. Instrum. 68, 129–132 (1997)

    ADS  CAS  Article  Google Scholar 

  19. Hertel, T., Wolf, M. & Ertl, G. UV photostimulated desorption of ammonia from Cu(111). J. Chem. Phys. 102, 3414–3430 (1995)

    ADS  CAS  Article  Google Scholar 

  20. Hussla, I. et al. Infrared-laser-induced photodesorption of NH3 and ND3 adsorbed on single-crystal Cu(100) and Ag film. Phys. Rev. B 32, 3489–3501 (1985)

    ADS  CAS  Article  Google Scholar 

  21. Prybyla, J. A., Heinz, T. F., Misewich, J. A., Loy, M. M. T. & Glownia, J. H. Desorption induced by femtosecond laser pulses. Phys. Rev. Lett. 64, 1537–1540 (1990)

    ADS  CAS  Article  Google Scholar 

  22. Salam, G. P., Persson, M. & Palmer, R. E. Possibility of coherent multiple excitation in atom transfer with a scanning tunneling microscope. Phys. Rev. B 49, 10655–10662 (1994)

    ADS  CAS  Article  Google Scholar 

  23. Lorente, N. & Persson, M. Theory of single molecule vibrational spectroscopy and microscopy. Phys. Rev. Lett. 85, 2997–3000 (2000)

    ADS  CAS  Article  Google Scholar 

  24. Lorente, N. & Persson, M. Theoretical aspects of tunneling-current-induced bond excitation and breaking at surfaces. Faraday Discuss. 117, 277–290 (2000)

    ADS  CAS  Article  Google Scholar 

Download references


J.I.P. acknowledges research contracts ‘Marie Curie’ (EU) and ‘Ramon y Cajal’ (Ministerio de Ciencia y Tecnología). N.L. acknowledges support from ACI Jeunes Chercheurs, and the CNRS programme ‘Nano-Objet Individuel’. All calculations were performed at the Centre d'Informatique National de l'Enseignement Supérieur (CINES) and the Centre de Calcul Midi-Pyrénées (CALMIP).

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. I. Pascual.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pascual, J., Lorente, N., Song, Z. et al. Selectivity in vibrationally mediated single-molecule chemistry. Nature 423, 525–528 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing