Abstract
In animals, the sphingolipid metabolite sphingosine-1-phosphate (S1P) functions as both an intracellular messenger and an extracellular ligand for G-protein-coupled receptors of the S1P receptor family, regulating diverse biological processes ranging from cell proliferation to apoptosis1,2,3. Recently, it was discovered in plants that S1P is a signalling molecule involved in abscisic acid (ABA) regulation of guard cell turgor4. Here we report that the enzyme responsible for S1P production, sphingosine kinase (SphK), is activated by ABA in Arabidopsis thaliana, and is involved in both ABA inhibition of stomatal opening and promotion of stomatal closure. Consistent with this observation, inhibition of SphK attenuates ABA regulation of guard cell inward K+ channels and slow anion channels, which are involved in the regulation of stomatal pore size. Surprisingly, S1P regulates stomatal apertures and guard cell ion channel activities in wild-type plants, but not in knockout lines of the sole prototypical heterotrimeric G-protein α-subunit gene, GPA1 (refs 5, 6, 7–8). Our results implicate heterotrimeric G proteins as downstream elements in the S1P signalling pathway that mediates ABA regulation of stomatal function, and suggest that the interplay between S1P and heterotrimeric G proteins represents an evolutionarily conserved signalling mechanism.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Spiegel, S. & Milstien, S. Sphingosine-1-phosphate, a key cell signaling molecule. J. Biol. Chem. 277, 25851–25854 (2002)
Pyne, S. & Pyne, N. J. Sphingosine 1-phosphate signalling and termination at lipid phosphate receptors. Biochim. Biophys. Acta 1582, 121–131 (2002)
Hla, T., Lee, M.-J., Ancellin, N., Paik, J. H. & Kluck, M. J. Lysophospholipids—receptor revelations. Science 294, 1875–1878 (2001)
Ng, C. K.-Y., Carr, K., McAinsh, M. R., Powell, B. & Hetherington, A. M. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410, 596–599 (2001)
Ullah, H. et al. Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292, 2066–2069 (2001)
Wang, X.-Q., Ullah, H., Jones, A. M. & Assmann, S. M. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292, 2070–2072 (2001)
Jones, A. M. G-protein-coupled signaling in Arabidopsis. Curr. Opin. Plant Biol. 5, 402–407 (2002)
Assmann, S. M. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14, S355–S373 (2002)
Assmann, S. M. & Wang, X.-Q. From milliseconds to millions of years: guard cells and environmental responses. Curr. Opin. Plant. Biol. 4, 421–428 (2001)
Blatt, M. R. Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol. 16, 221–241 (2000)
Schroeder, J. I., Kwak, J. M. & Allen, G. J. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410, 327–330 (2001)
Kohama, T. et al. Molecular cloning and functional characterization of murine sphingosine kinase. J. Biol. Chem. 273, 23722–23728 (1998)
Brownlee, C. Intracellular signalling: sphingosine-1-phosphate branches out. Curr. Biol. 11, R535–R538 (2001)
Ng, C. K.-Y. & Hetherington, A. M. Sphingolipid-mediated signalling in plants. Ann. Bot. (Lond.) 88, 957–965 (2001)
Pandey, S., Wang, X.-Q., Coursol, S. & Assmann, S. M. Preparation and applications of Arabidopsis thaliana guard cell protoplasts. New Phytol. 153, 517–526 (2002)
Pei, Z.-M., Kuchitsu, K., Ward, J. M., Schwarz, M. & Schroeder, J. I. Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9, 409–423 (1997)
Dickson, R. C. & Lester, R. L. Sphingolipid functions in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1583, 13–25 (2002)
Crowther, G. J. & Lynch, D. V. Characterization of sphinganine kinase activity in corn shoot microsomes. Arch. Biochem. Biophys. 337, 284–290 (1997)
Nishiura, H., Tamura, K., Morimoto, Y. & Imai, H. Characterization of sphingolipid long-chain base kinase in Arabidopsis thaliana. Biochem. Soc. Trans. 28, 747–748 (2000)
Olivera, A., Kohama, T., Tu, Z., Milstien, S. & Spiegel, S. Purification and characterization of rat kidney sphingosine kinase. J. Biol. Chem. 273, 12576–12583 (1998)
Sperling, P., Zähringer, U. & Heinz, E. A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein. J. Biol. Chem. 273, 28590–28596 (1998)
Staxén, I. et al. Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc. Natl Acad. Sci. USA 96, 1779–1784 (1999)
van Brocklyn, J. R. et al. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J. Cell Biol. 142, 229–240 (1998)
Himmel, H. M. et al. Evidence for EDG-3 receptor-mediated activation of I(KAch) by sphingosine-1-phosphate in human atrial cardiomyocytes. Mol. Pharmacol. 58, 449–454 (2000)
Schilling, T. et al. Lysophospholipids induce membrane hyperpolarization in microglia by activation of IKCA1 Ca2+-dependent K+ channels. Neuroscience 109, 827–835 (2002)
Joseffson, L. G. & Rask, L. Cloning of a putative G-protein-coupled receptor from Arabidopsis thaliana. Eur. J. Biochem. 249, 415–420 (1997)
Colucci, G., Apone, F., Alyeshmerni, N., Chalmers, D. & Chrispeels, M. J. GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc. Natl Acad. Sci. USA 99, 4736–4741 (2002)
Cismowski, M. J., Takesono, A., Bernard, M. L., Duzic, E. & Lanier, S. M. Receptor-independent activators of heterotrimeric G-proteins. Life Sci. 68, 2301–2308 (2001)
Meyer zu Heringdorf, D. et al. Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors. EMBO J. 17, 2830–2837 (1998)
Acknowledgements
We thank J. P. Hobson for the recombinant purified hSphK1, X.-Q. Wang, A. Olivera and J.-N. Pierre for technical advice, J. Coursol for statistical analyses, and T. Jacob and C. K.-Y. Ng for critically reading the manuscript. This work was supported by grants from the United States Department of Agriculture (USDA) and the National Science Foundation to S.M.A., from the USDA to S.G., and from the National Institutes of Health to S.S.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Coursol, S., Fan, LM., Stunff, H. et al. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423, 651–654 (2003). https://doi.org/10.1038/nature01643
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature01643
This article is cited by
-
PLC1 mediated Cycloastragenol-induced stomatal movement by regulating the production of NO in Arabidopsis thaliana
BMC Plant Biology (2023)
-
Genetic and molecular basis of carotenoid metabolism in cereals
Theoretical and Applied Genetics (2023)
-
Role of Heterotrimeric G-Proteins in Improving Abiotic Stress Tolerance of Crop Plants
Journal of Plant Growth Regulation (2023)
-
Heterotrimeric G-protein α subunit (RGA1) regulates tiller development, yield, cell wall, nitrogen response and biotic stress in rice
Scientific Reports (2021)
-
Heterotrimeric G-protein α subunit (LeGPA1) confers cold stress tolerance to processing tomato plants (Lycopersicon esculentum Mill)
BMC Plant Biology (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.