Letter | Published:

Experimental entanglement purification of arbitrary unknown states


Distribution of entangled states between distant locations is essential for quantum communication1,2,3 over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification4,5—a way to extract a subset of states of high entanglement and high purity from a large set of less entangled states—is thus needed to overcome decoherence. Besides its important application in quantum communication, entanglement purification also plays a crucial role in error correction for quantum computation, because it can significantly increase the quality of logic operations between different qubits6. Here we demonstrate entanglement purification for general mixed states of polarization-entangled photons using only linear optics7. Typically, one photon pair of fidelity 92% could be obtained from two pairs, each of fidelity 75%. In our experiments, decoherence is overcome to the extent that the technique would achieve tolerable error rates for quantum repeaters in long-distance quantum communication8. Our results also imply that the requirement of high-accuracy logic operations in fault-tolerant quantum computation can be considerably relaxed6.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Ekert, A. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991)

  2. 2

    Bennett, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

  3. 3

    Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 83, 3081–3084 (1993)

  4. 4

    Bennett, C. H. et al. Purification of noisy entanglement, and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

  5. 5

    Deutsch, D. et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

  6. 6

    Duer, W. & Briegel, H.-J. Entanglement purification for quantum computation. Phys. Rev. Lett. 90, 067901 (2003)

  7. 7

    Pan, J.-W., Simon, C., Brukner, C. & Zeilinger, A. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

  8. 8

    Briegel, H.-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

  9. 9

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

  10. 10

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

  11. 11

    Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

  12. 12

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

  13. 13

    Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)

  14. 14

    Pan, J.-W., Gasparoni, S., Aspelmeyer, M., Jennewein, T. & Zeilinger, A. Experimental realization of freely propagating teleported qubits. Nature 421, 721–725 (2003)

  15. 15

    Jones, J. Quantum computing: Putting it into practice. Nature 421, 28–29 (2003)

  16. 16

    Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

  17. 17

    Kwiat, P. G., Barraza-Lopez, S., Stefanov, A. & Gisin, N. Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001)

  18. 18

    Yamamoto, T., Koashi, M., Ozdemir, S. K. & Imoto, N. Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003)

  19. 19

    Zhao, Z., Yang, T., Chen, Y.-A., Zhang, A.-N. & Pan, J.-W. Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. (in the press); preprint available at 〈http://xxx.lanl.gov/quant-ph/0211075〉 (2003).

  20. 20

    Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

  21. 21

    Kwiat, P. G. et al. New high intensity soure of polarization-entangled photon. Phys. Rev. Lett. 75, 4337–4341 (1995)

  22. 22

    Zukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed source. Ann. NY Acad. Sci. 755, 91–102 (1995)

  23. 23

    Simon, C. & Pan, J.-W. Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

  24. 24

    Pittman, T. B., Jacobs, B. C. & Franson, J. D. Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88, 257902 (2002)

  25. 25

    Rudolph, T. & Pan, J.-W. A simple gate for linear optics quantum computing. Preprint available at 〈http://xxx.lanl.gov/quant-ph/0108056〉 (2001).

  26. 26

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

  27. 27

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

  28. 28

    Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–596 (2001)

  29. 29

    Chen, Z-B., Pan, J.-W., Zhang, Y.-D., Brukner, C. & Zeilinger, A. All-versus-nothing violation of local realism for two entangled photons. Phys. Rev. Lett. 90, 160408 (2003).

  30. 30

    Zhao, Z., Yang, T., Chen, Z.-B., Du, J.-F. & Pan, J.-W. Deterministic and highly efficient quantum cryptography with entangled photon pairs. Preprint available at 〈http://xxx.lanl.gov/quant-ph/0211098〉 (2002).

Download references


We thank H. Briegel, T. Jennewein and C. Simon for discussions. This work was supported by the Austrian Science Foundation (FWF), and by the TMR and the QuComm programs of the European Commission.

Author information

Correspondence to Jian-Wei Pan or Anton Zeilinger.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Schematic drawing showing the principle of entanglement purification using linear optics.
Figure 2: Experimental set-up for entanglement purification. A pulse of ultraviolet light passes through a BBO crystal twice to produce two polarization-entangled photon pairs, that is, pair 1 in a1–b1 and pair 2 in a2–b2.
Figure 3: Experimental results showing the procedures to achieve perfect temporal overlap and to adjust the phase φ4 = 0.
Figure 4: Experimental results.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.