Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental entanglement purification of arbitrary unknown states

Abstract

Distribution of entangled states between distant locations is essential for quantum communication1,2,3 over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification4,5—a way to extract a subset of states of high entanglement and high purity from a large set of less entangled states—is thus needed to overcome decoherence. Besides its important application in quantum communication, entanglement purification also plays a crucial role in error correction for quantum computation, because it can significantly increase the quality of logic operations between different qubits6. Here we demonstrate entanglement purification for general mixed states of polarization-entangled photons using only linear optics7. Typically, one photon pair of fidelity 92% could be obtained from two pairs, each of fidelity 75%. In our experiments, decoherence is overcome to the extent that the technique would achieve tolerable error rates for quantum repeaters in long-distance quantum communication8. Our results also imply that the requirement of high-accuracy logic operations in fault-tolerant quantum computation can be considerably relaxed6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic drawing showing the principle of entanglement purification using linear optics.
Figure 2: Experimental set-up for entanglement purification. A pulse of ultraviolet light passes through a BBO crystal twice to produce two polarization-entangled photon pairs, that is, pair 1 in a1–b1 and pair 2 in a2–b2.
Figure 3: Experimental results showing the procedures to achieve perfect temporal overlap and to adjust the phase φ4 = 0.
Figure 4: Experimental results.

Similar content being viewed by others

References

  1. Ekert, A. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Bennett, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 83, 3081–3084 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C. H. et al. Purification of noisy entanglement, and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Deutsch, D. et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Duer, W. & Briegel, H.-J. Entanglement purification for quantum computation. Phys. Rev. Lett. 90, 067901 (2003)

    Article  ADS  Google Scholar 

  7. Pan, J.-W., Simon, C., Brukner, C. & Zeilinger, A. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Briegel, H.-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  11. Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  CAS  Google Scholar 

  12. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Pan, J.-W., Gasparoni, S., Aspelmeyer, M., Jennewein, T. & Zeilinger, A. Experimental realization of freely propagating teleported qubits. Nature 421, 721–725 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Jones, J. Quantum computing: Putting it into practice. Nature 421, 28–29 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  CAS  Google Scholar 

  17. Kwiat, P. G., Barraza-Lopez, S., Stefanov, A. & Gisin, N. Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Yamamoto, T., Koashi, M., Ozdemir, S. K. & Imoto, N. Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Zhao, Z., Yang, T., Chen, Y.-A., Zhang, A.-N. & Pan, J.-W. Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. (in the press); preprint available at 〈http://xxx.lanl.gov/quant-ph/0211075〉 (2003).

  20. Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Kwiat, P. G. et al. New high intensity soure of polarization-entangled photon. Phys. Rev. Lett. 75, 4337–4341 (1995)

    Article  ADS  CAS  Google Scholar 

  22. Zukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed source. Ann. NY Acad. Sci. 755, 91–102 (1995)

    Article  ADS  Google Scholar 

  23. Simon, C. & Pan, J.-W. Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  24. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88, 257902 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Rudolph, T. & Pan, J.-W. A simple gate for linear optics quantum computing. Preprint available at 〈http://xxx.lanl.gov/quant-ph/0108056〉 (2001).

  26. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–596 (2001)

    Article  ADS  Google Scholar 

  29. Chen, Z-B., Pan, J.-W., Zhang, Y.-D., Brukner, C. & Zeilinger, A. All-versus-nothing violation of local realism for two entangled photons. Phys. Rev. Lett. 90, 160408 (2003).

  30. Zhao, Z., Yang, T., Chen, Z.-B., Du, J.-F. & Pan, J.-W. Deterministic and highly efficient quantum cryptography with entangled photon pairs. Preprint available at 〈http://xxx.lanl.gov/quant-ph/0211098〉 (2002).

Download references

Acknowledgements

We thank H. Briegel, T. Jennewein and C. Simon for discussions. This work was supported by the Austrian Science Foundation (FWF), and by the TMR and the QuComm programs of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Wei Pan or Anton Zeilinger.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, JW., Gasparoni, S., Ursin, R. et al. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003). https://doi.org/10.1038/nature01623

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01623

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing